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SOFTWARE EVOLUTION, VOLATILITY AND LIFECYCLE MAINTENANCE
PATTERNS:

A LONGITUDINAL ANALYSIS
Thesis Abstract 
Evelyn Barry 
April 2001

Change is a constant in our world and information systems are no exception.
Y2K. required massive software modifications and the need for change continues in the 
application systems for the World Wide Web. Information systems often remain 
productive for many years, yet change so dramatically that current system characteristics 
no longer resemble their original implementation.

Software evolution is described as the dynamic behavior, growth and incremental 
change of information systems throughout their productive lives. Even though software 
maintenance represents 80% of the lifetime cost of an information system, the IS 
community has little scientific knowledge explaining how information systems evolve 
and the consequences of different evolutionary patterns. This work expands our 
understanding of software evolution by providing quantitative measurement and analysis 
of software evolution, examining its causes and its consequences.

Software evolution is characterized by software volatility and lifecycle 
maintenance profiles. These traits are used to address three research questions: (I) how 
can software volatility be conceptualized and measured? (2) what are the antecedents of 
software volatility? and (3) are software volatility and lifecycle maintenance profiles 
determinants of lifecycle maintenance outcomes?

Formal criteria are applied to rigorously define, evaluate and validate three 
measures of software volatility : amplitude, periodicity and deviation. Empirical data 
demonstrate the contingent, discriminant and predictive validity of these measures.

Conceptual models for die second and third questions are developed and 
empirically tested to analyze the relationships of software evolution to information 
systems and their lifecycle maintenance processes. Hypotheses are tested by panel 
regressions based on empirical data from a detailed 20-year maintenance log of software 
modifications in a portfolio of 23 information systems.

This thesis makes several contributions. A rigorous set of evaluation criteria for 
software measurement is developed and applied. These analyses describe the 
relationships connecting amplitude, periodicity and deviation with lifecycle maintenance 
patterns, and lifecycle maintenance outcomes of processing errors and maintenance costs. 
These results are strengthened by use of a unique empirical data set ten-times larger than 
previous longitudinal studies o f software evolution. These new insights into software 
evolutionary processes can be used to advantage by IS researchers and managers.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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INTRODUCTION
As we begin the 215' century there is a renewed interest in long-term perspectives 

for many of the management practices currently in use. We have now had electronic 

computers for over half a century, and with them, the added responsibility of software 

management Many people were dumbfounded by the possibility of a Y2K problem. 

With the rapidity of changes in information technology, how could we still be dealing 

with software written in some cases more than 20 years ago?

What IS professionals have long realized, and what many others are now 

beginning to understand, is that many information systems remain productive for 

decades. It is estimated that the average enterprise general ledger application system in 

Fortune 1000 companies is 15 years old (Kalakota and Whinston, 1996, p. 390). The 

Y2K problem highlighted the continual investment required of organizations to maintain 

their systems.

With the recognition that information systems are long-lived comes the necessity 

to understand longitudinal changes occurring in those systems. Information systems 

must continue to operate efficiently and effectively in dynamic competitive 

environments. To perform at satisfactory levels, software systems must periodically be 

adjusted to model changes occurring around them. Software changes may reveal errors 

of omission or miscommunication, or be the result of requirements for additional 

functionality. Whether these changes are done to correct flaws in existing code, adapt to 

the environment, or add functionality, they are generally classified as lifecycle software 

maintenance.

Software maintenance activities span a system's productive life and can consume 

as much as 80% of the total effort expended on a system during its lifetime (Bennett,

l - i
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1996). While researchers recognize the importance of lifeycle maintenance activities and 

their outcomes, relatively little empirical research has been conducted that examines the 

type and extent of changes taking place.

The longitudinal perspective required for analysis of lifecycle maintenance leads 

us to the process of software evolution. Belady and Lehman (1976) define software 

evolution as “ ... the dynamic behavior of programming systems as they are maintained 

and enhanced over their life times.'’ Software evolution is of increasing importance as 

systems in organizations become longer-lived. We refer to those changes as lifecycle 

maintenance.

environment ‘ environment "

Time

Figure 1: Software Evolution and Lifecycle Maintenance

We observe that lifecycle maintenance activities are the driving force in the 

longitudinal transformations occurring within an information system. Not every 

information system displays the same evolutionary changes in behavior. What accounts 

for these differences? How do these differences affect lifecycle maintenance outcomes 

such as processing errors and maintenance costs? Do differences in information system 

behavior affect maintenance outcomes?

The evolutionary process of software change can be described by analyzing 

software volatility, i.e. the amount and intensity of software change. Some software 

systems are constantly undergoing major modifications and others remain untouched for

1 -2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

months and years at a time. By developing a measure of software volatility and 

identifying its antecedents, we can expand our understanding of software evolution. We 

use our measures of software volatility and historical patterns of lifecycle maintenance 

activities to describe software evolution. We then investigate the relationship between 

software evolution and software maintenance outcomes. We combine our measures of 

software volatility with a detailed taxonomy of lifecycle maintenance activities to 

describe software evolution. We investigate these factors to see what effect they have on 

outcomes such as processing errors and maintenance costs. This research project 

addresses three research questions by using a software evolutionary perspective to study 

longitudinal transformations that information systems undergo during their lifetimes.

/. How can software volatility be conceptualized and measured?

2. What are the antecedents o f software volatility?

3. Using software volatility and lifecycle maintenance profiles as descriptors o f 
software evolution, are the characteristics o f software evolution determinants 
o f lifecycle maintenance outcomes?

These research questions now become pieces of a puzzle. As shown in Figure 2, 

each research objective is one step toward painting a complete picture of the roles 

lifecycle maintenance activities and software volatility play in the evolutionary 

transformations that occur during the productive lives of information systems.

The next chapter presents a discussion of software evolution with a brief review 

of relevant literature. The research questions are presented and empirically tested in each 

of the following three chapters. The results of this research are then summarized in 

Chapter 6. Additional empirical results and a detailed description of data conversion 

processes are included in the appendix.

1 - 3
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Figure 2: Overview of Three Research Questions

REFERENCES
Belady, L.A., and Lehman, M.M., "A Model of Large Program Development", IBM 

Systems Journal. 1976, No. 3, pp. 225-252.
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Technology. Nov. 1996, Vol. 39, No. 11, pp. 673-380.
Kalakota, R., and Whinstcm, A.B., Electronic Commerce: A Manager's Guide. Addison- 

Wesley, Reading, MA, 1996.
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CHAPTER 2:

LITERATURE REVIEW - SOFTWARE EVOLUTION
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PRIOR RESEARCH ON SOFTWARE EVOLUTION
As with discussions of the evolution of biological entities, analyses of software

evolutionary processes must account for both the inherent characteristics of software 

systems, and the effects of environmental influences on them. Software changes occur 

for a variety of reasons. Some of these are in response to environmental changes and 

some are the result of a natural growth in user expectations and functional demands 

placed on the application.

Prior studies of software evolution assume information systems are open systems, 

embedded in their respective organizations. Because they are open systems exchanging 

information with their environment, information systems are open systems, growing and 

changing during their productie lives in response to their environment. (Scott, 1992; 

Morgan, 1997). A shown in Figure I embedded systems are influenced and changed by 

their environment, and in turn they influence and change their environment (Lehman and 

Belady, 1985; Pfleeger, 1998).

Researchers have analyzed software evolution for over three decades. (See 

Tables 1 and 2) Based on a series of empirical and analytical studies, researchers, 

Lehman et al., have developed eight laws of software evolution for embedded systems. 

(Lehman and Belady, 1985,, et al., 1997). (See Table 3) Prior to work by FCemerer and 

Slaughter (1997,1999) none of these empirical studies examined data covering more than 

four years of software evolution. (See Table 4.)

Current research on software evolution is headed in a number of different 

directions. As reported in a recent Workshop on Empirical Studies of Software 

Development and Evolution, software evolution is providing a theoretical foundation for

2 - 1
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analysis of reverse engineering technologies and new perspectives on cost estimation 

tools. In addition further work is being done on the FEAST/2 (Feedback Evolution and 

Software Technology) project, further investigating Lehman's eighth law of software 

evolution, the Law of System Feedback (Harrison, et al., 1999).

feedback

software systemenvironment
feedback

Embedded Software System

Figure 1: Embedded Systems

Author year Title
Bennet 1996 Software Evolution: Past, Present and Future
Schneidewind 1987 The State o f Software Evolution
Kemerer 1995 Software Complexity and Software Maintenance: 

A survey o f empirical research
Kemerer & Slaughter 1997 Methodologies for Performing Empirical Studies: 

Report from the International Workshop on 
Empirical Studies of Software Maintenance

Cote, Bourque, 
Oligny & Rivard

1988 Software Metrics: An Overview o f Recent Results

Belady 1979 On Software Complexity

Table 1: Reviews of Software Evolution Research
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Author Year Title Dependent
variable(s)

Independent
variablefs)

Conclusion

Lehman 1998 Software’s Future: Managing 
Evolution

Discussion

Lehman 1996 Feedback in the Software Feedback learning system type, benefits from innovative changes to forward path methods
Evolution Process system, success o f  

forward path 
innovations

software process limited by feedback occurring in software process

Brooks 1995 Mvthical Man Month general software process management techniques
Perry 1994 Dimensions o f Software 

Evolution
discusses 3 dimensions: domain (real world and its 
abstractions), experience (from feedback,experimenta-tion), 
process (methods, technologies, organizations)

Yau, 1988 An Integrated Life-Cycle Model describes software maintenance in 4 phases and concentrates on
Nicholl, for Software Maintenance interphase relationships; describes software in terms of control
Tsai, & flow, data flow and data structure; permits analysis o f basic
Liu properties o f software system throughout life-cycle
Lehman 1984 Program Evolution software process can be studied in its environment - also 

detailed discussion o f SPE classification o f systems; discussion 
of step paradigm for software process

Lehman 1980 On Understanding Laws, 
Evolution and Conservation in the 
Large-Program Life Cycle

explain and support 5 laws o f software evolution

Wood- 1980 A Mathematical Model for the size &complexity structural work develop mathematical models expressing the laws o f software
side Evolution of Software of software, 

efficiency o f  
software process

effort, non- 
structural work 
effort, release n o , 
modules produced

evolution, gives laws internal validity

Belady 1978 Staffing Problems in Large Scale 
Programming

discussion o f the type and sequence of work done in software 
development, and the iterative nature o f the process

l.ehman 1977 Human Thought and Action as an 
Ingredient o f System Behavior

top-down analysis o f the software process; discussion relies on 
systems science

Table 2: Descriptive / Analytical Research on the Nature of Software Evolution and Lifecycle Maintenance
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Laws of Software Evolution Description
Law of Continuous Change

Law of Increasing Entropy (later renamed Law of 
Increasing Complexity)

Law of statistically smooth growth (also called the 
Law of Self Regulation)

Law of invariant work rate (also called Law of 
Conservation o f  Organizational Stability)
Law of conservation o f familiarity

Law of continuing growth 

Law o f declining quality 

Law o f system feedback

Systems must continually adapt to the environment 
to maintain satisfactory performance 
As systems evolve they become more complex 
unless work is specifically done to prevent this 
breakdown in structure
The software evolution processes are self-regulating 
and promote globally smooth growth of an 
organization’s software
The organization’s average effective global activity 
rate is invariant throughout system’s lifetime 
Incremental growth rate of a system is constant to 
conserve the organization’s familiarity with the 
software.
Functional content o f  systems must be continually 
increased to maintain user satisfaction 
System quality declines unless it is actively 
maintained and adapted to environmental changes 
Software evolutionary processes must be recognized 
as multi-level, multi-loop, multi-agent feedback 
systems in order to achieve system improvement.

Table 3: Laws of Software Evolution (Lehman, et al., 1997)

Author _______ Year Title__________________________ Data
Kemerer and Slaughter 1999 An Empirical Approach to 

Studying Software Evolution
20 years o f software modifications 
for 23 software systems

Kemerer and Slaughter 1997 Determinants o f Software 
Maintenance Profiles: An 
Empirical Investigation

5488 modifications in 621 
software modules in five 
application systems; 
approximately 9 years o f software 
changes

Lehman, et al. 1997 Metrics and Laws o f Software 
Evolution: The Nineties View

21 releases of a financial software 
package

Basili, et al. 1996 Understanding and Predicting the 
Process o f Software Maintenance 
Releases

25 releases of 10 different software 
systems

Gefen and Schneberger 19% The Non-Homogeneous 
Maintenance Periods: A Case 
Study of Software Modifications

29 months o f software problem 
reports

Cook and Roesch 1994 Real-Time Software Metrics 10 versions of real-time German 
switching software released over 
18 months

Yuen 1987 A Statistical Rationale for 
Evolution Dynamics Concepts

Modules from OS 360, OMEGA, 
Executive, BD, B, DOS, CCSS 
systems

Yuen 1985 An Empirical Approach to the 
Study of Errors in Large 
Software Under Maintenance

19 months o f data for 5000 
'component', 3000 KLOC

Belady and Lehman 1976 A Model o f Large Program 
Development

21 user-oriented releases

Table 4: Empirical Studies of Software Evolution

2 - 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

REFERENCES

Basili, V., Briand, L., Condon, S., Kim, Y.M., Melo, W., and Valett, J., "Understanding 
and Predicting the Process of Software Maintenance Releases", 18th International 
Conference on Software Engineering. 1996, Berlin, Germany.

Belady, L.A., "Evolved Software for the 80's", Computer. Vol. 12, No. 2, Feb. 1979, pp. 
79-82.

Bennet, K , "Software evolution: past, present and future", Information and Software 
Technology. Vol. 39, No. 11, Nov. 1996, pp. 673-680

Brooks, F.J.. The Mythical Man-Month. Addison-Wesley Publishing Co., 1995.
Cook, C.R. and Roesch, A., "Read-Time Software Metrics", Journal of Systems and 

Software. Mar. 1994, Vol. 24, No. 3, pp. 223-237.
Cote, V., Bourque, P., Oligny, S., Rivard, N., “Software Metrics: An Overview of Recent 

Results”, The Journal of Systems and Software. Vol. 8, No. 2, March 1988, pp. 
121-131.

Gefen, D., and Schneberger, S.L., "The Non-Homogeneous Maintenance Periods: A Case 
Study of Software Modifications", Proceedings of the IEEE Conference on 
Software Maintenance. 1996, Monterey, CA.

Harrison, R., Badoo, N. Barry, E., Biffl, S., Parra, A., Winter, B., and Wuest, J., 
"Workshop and Conference Reports: ESSDE’99 Working Group Report on 
Directions and Methodologies for Empirical Software Engineering Research", 
Empirical Software Engineering. December 1999, Vol. 4, No. 4, pp. 405-410.

Kemerer, C.F., "Software Complexity and Software Maintenance: A Survey o f Empirical 
Research", Annals o f Software Engineering. Vol. 1, Sept. 1995, pp. 1-22.

Kemerer, C.F. and Slaughter, S. A., "Determinants of Software Maintenance Profiles: An 
Empirical Investigation", Journal of Software Maintenance. Vol. 9,1997, pp. 235- 
251.

Kemerer, C.F. and Slaughter, S.A., 1999, "An Empirical Approach to Studying Software 
Evolution", IEEE Transactions on Software Engineering. Vol. 25, No. 4, pp. 493- 
509.

Lehman, M.M.," Human Thought and Action as an Ingredient of System Behavior", 
Encvlcopedia of Ignorance. R. Duncan and M. W. Smith (Eds), Pergamon Press, 
Oxford, 1977.

Lehman, M.M., "On Understanding Laws, Evolution and Conservation in the Large 
Program Life Cycle", Journal of Systems and Software. Vol. 1, No. 3,1980, pp. 
213-221.

Lehman, M.M., "Program Evolution", Information Processing and Management. Vol. 20, 
1984, pp. 19-36

Lehman, M.M., and Belady, L.A., Program Evolution: Processes of Software Change 
Academic Press, London, 1985.

Lehman, M.M.. "Feedback in the Software Evolution Process", Information and Software 
Technology. Vol. 39, No. 11, Nov. 1996, pp. 681-686.

2 - 5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Lehman, M.M., Ramil, J.F., Wemick, P.D., Perry, D.E. and Turski, W.M., "Metrics and 
Laws of Software Evolution - The Nineties View", Metrics '97. the Fourth 
International Software Metrics Symposium. 1997, Albequerque, NM

Lehman, M.M., "Software's Future: Managing Evolution", IEEE Software. January- 
February, 1998, pp. 40-44.

Morgan, G., Images of Organization. Sage Publications, Thousand Oaks, CA, 1997.
Perry, D.E., "Dimensions of Software Evolution", IHEfc Conference on Software 

Maintenance. 1994, IEEE.
Pfleeger, S., "The Nature of System Change”, IEEE Software. Vol. 15, No. 3, May-June 

1998, pp. 87-90.
Schneidewind, N.F., "The State of Software Evolution", IEEE Transactions on Software 

Engineering. Vol. 13, No. 3, March 1987, pp. 103-110.
Scott, R.W., Organizations: Rational. Natural, and Open Systems 3rd Edition, Prentice 

Hall, Englewood Cliffs, NJ, 1992.
Woodside, C.M., "A Mathematical Model for the Evolution of software", Journal of 

Systems and Software. Vol. 1, No. 4,1980.
Yau, S.S., Nicholl, R.A., Tsai, J., Liu, S., "An Integrated Life-Cycle Model for Software 

Maintenance", IEEE Transactions on Software Engineering. Vol. 14, No. 8, Aug. 
1988, pp. 1128-1144.

Yuen, C.H., "An Empirical Approach to the Study of Errors in Large Software Under 
Maintenance". 2nd IEEE Conference on Software Maintenance. 1985, 
Washington, D.C.

Yuen, C.H., "A Statistical Rationale for Evolution Dynamics Concepts", Proceedings of 
the Conference on Software Maintenance. 1987, Austin, TX.

2- 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

CHAPTER 3:

RESEARCH QUESTION 1 - 

A MULTIDIMENSIONAL MEASUREMENT OF SOFTWARE VOLATILITY
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1 INTRODUCTION

Everyone has heard the adage "The only thing constant is change". It is no

surprise, therefore, that change is also a constant in software systems. This is probably 

more true of software systems than other phenomenon due to their often perceived ease 

of change. In the software engineering community we dealt with change while working 

on software modifications for Y2K, and we continue to deal with rapid changes while 

supporting software for the World Wide Web. Not all software systems' change in the 

same way or at the same rate. Some software systems are constantly undergoing major 

modifications, while others remain untouched for months and years at a time. What 

accounts for these differences and how can they be analyzed? Identification and 

understanding of these differences in system evolution can lead to improved abilities to 

engineer and manage software systems.

Exact definitions and measurement of research variables are essential before more 

in-depth analysis can be conducted. As defined by Belady and Lehman, software 

evolution is "the dynamic behavior of programming systems as they are maintained and 

enhanced over their life times" (Belady and Lehman, 1976). Some researchers have 

expanded this definition to concentrate on lifecycle maintenance processes, using 

"evolution" as a synonym for "maintenance" or "modification" (Van Horn, 1980). This 

view changes the research emphasis to examine processes people use to develop software 

systems and to follow systems as they progress through iterative releases (Lehman and 

Ramil, 1999).

In this study, we draw upon Belady and Lehman's original definition of software 

evolution. In doing so, we re-emphasize the general systems approach to understanding

1 In this discussion system refers to a group of related programs or modules that function together toward a common 
purpose. Wc refer to programs as dements of a software system. A program is a set of ordered computer commands 
assembled to accomplish a specific task.
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the nature of software systems. As in Kemerer and Slaughter (Kemerer and Slaughter, 

1999), this work examines post-implementation system behavior. For over two decades 

Lehman et al. (Belady and Lehman, 1976; Lehman and Belady, 1985) have postulated 

and tested a series of laws of software evolution describing proposed universal aspects of 

software system behavior. These laws describe software behavior as dynamic 

characteristics of change, entropy, growth and quality. The Law o f Continuous Change 

was among the first of these laws to be formally stated and is based on experiences of 

practitioners working with hardware and software (Lehman and Belady, 1985). To 

understand the dynamic behavior of individual software systems, additional research is 

needed to build on descriptions of universal behavior and seek explanation and 

understanding of variations in behavior (Thompson, 1967). While we recognize that all 

software systems change throughout their productive lives, they do not all change in the 

same way, or at the same pace. This research identifies software volatility as a dynamic 

characteristic of system behavior. In so doing, this work emphasizes the longitudinal 

nature of evolutionary processes allowing comparison of the variations in behavior across 

systems and over time.

Key to understanding the variations in software system is the ability to measure 

important characteristics of software lifecycle evolution, including software volatility. In 

applying engineering discipline to the endeavor of software engineering, measurement of 

work products is considered essential (Tian and Zelkowitz, 1992). This discipline should 

apply to studies of software behavior as well. Hence, the objective of this research is to 

define a direct measure of software volatility, evaluate the proposed measurement 

function, and empirically provide evidence that the new metric can be collected. 

Software volatility measures can then be used to improve our theoretical understanding of 

software evolution, and to assist practitioners in managing long-lived software systems.
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Because software programs generally do not change unless someone directly 

alters source code, previous measures of software volatility have concentrated on counts 

of software modifications. For example, versioning is a count of new editions of a 

software system, e.g. with the releases of the commercial software product MS Windows 

NT each successive version number may represent different amounts of additional or 

modified source code. With the versions of Windows NT implemented between 1993 and 

2000, the software system grew from 6. IM to 30M lines of code (LOC) (Hamm and Port, 

1999). However, there are typically irregular time intervals and changes in software size 

between releases. Versioning, therefore, provides only a relatively crude measure of 

changes taking place. It marks major levels of change, but fails to track the size of change 

or the periodicity of change.

Using a simple count of software modifications for a measure of volatility fails to 

consider how often changes occur. If two software systems have both had the same 

number of modifications, but one is 2 years old and the other is 5 years old, the older 

system would intuitively be considered the less volatile of the two, ceteris paribus. 

However, a simple rate of software modification over time may still not adequately 

describe software volatility. Consider two systems with different patterns of lifecycle 

maintenance such that one system is modified at the end of each month, and the other 

annually undergoes 12 modifications at one time. The two systems each change at the 

rate of 12 modifications per year, yet one is in a constant state of flux, and the other 

remains unchanged for 11 of every 12 months. Hence, more descriptive measures of 

software volatility must include a measure of the time between source code 

modifications. System size must also be considered. If two systems report 10 changes of 

equal size per month, but one system has 500 programs and the other has 10 programs, 

the former is intuitively less volatile.
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We propose a 3-dimensional measure of software system volatility. The first 

dimension is a measure of software change size or amplitude. The second is a measure of 

how often changes occur, or periodicity. By using amplitude and periodicity, we can 

describe software volatility with a smooth sine curve similar to that used to describe 

physical systems, e.g. sound waves (Bueche, 1969). However, software system behavior 

is unlikely to be as consistent as a physical system. A more precise measure of software 

volatility will include a third dimension, a measure of how closely software volatility 

follows the implied cyclical pattern. As in the studies of environmental volatility by 

Wholey and Brittain (1989), we add a third dimension, deviation, to indicate how closely 

system behavior follows the cyclical patterns described by periodicity. Measurements for 

each of these dimensions can be calculated periodically throughout the productive life of 

a software system and analyzed to describe changes in system behavior as it evolves.

In section 2 we first briefly review prior research that is relevant to the 

measurement of software volatility and then formally define a 3-dimensional measure of 

software system volatility. In sections 3 and 4 we evaluate these dimensional measures 

and provide empirical support to validate the proposed metrics. This work contributes to 

our understanding of the lifecycle transformations of software systems by maintaining a 

system-level perspective while analyzing the full extent of a system's productive life 

span. Software lifecycle changes have traditionally been tracked at the program level. To 

more fully understand lifecycle transformations occurring at the level of software systems 

a more comprehensive approach is required. Software volatility should measure multiple 

aspects of the changes occurring in a software system throughout its lifecycle. A system- 

level measure of software volatility can be used for descriptive analysis of system 

behavior. In addition, this project lays the groundwork for building theories to explain 

and predict software volatility and analyze its contribution to software product attributes 

and lifecycle maintenance processes and their outcomes.
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2 A MULTI-DIMENSIONAL DEFINITION OF SOFTWARE VOLATILITY
In this section we define the attributes of software volatility and propose

measurement functions for each. In section 3 we develop a set of formal evaluation 

criteria for measurement functions and assess our proposed measures. In section 4 we 

provide empirical evidence of the validity of these metrics, and in sections 5 and 6 we 

discuss the implications and application of these measures of software volatility

We start by clearly defining each attribute being measured. The use of a natural 

language definition in addition to precise mathematical terminology is essential in 

developing a consensus about what is being measured and how it should be done 

Finkelstein and Leaning, 1984; Xia, 1999). For wide application and adoption of new 

measures it is also important that such measures be software programming language and 

technology independent (Churcher and Shepperd, 1995).

Previous empirical studies of software evolution have measured longitudinal 

changes in software product attributes and compared those values at different points in 

time (Banker and Slaughter, 2000). To understand the evolution of software systems and 

analyze their dynamic behavior, we need to analyze characteristics of software behavior.

2.1 Pr io r  Stud ies  o f  Vo la tility

While a number of researchers have examined the problem of measurement of

software product and software process attributes, there is little empirical research that

measures dynamic characteristics of software behavior, particularly, software volatility.

Existing studies tend to use basic counts of software modifications as a direct measure

(Banker and Slaughter, 2000). In contrast, a predictive model for the logical stability of

software is based on other software product attributes (Yau and Collofello, 1980; 1985).

In that work the dependent variable is expressed as a rating of the ripple effect, i.e. the

effect of changes in other system programs felt by the program being evaluated.
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To develop additional perspective on software volatility we turn to other research 

to see how others have measured change. Some researchers have studied other types of 

volatility using counts of change incidents Snyder and Glueck, 1982; Dess and Beard, 

1984; Stroh, Baumann and Reilly, 1996). Schneidewind's study of process stability 

examined trends by first calculating a change metric, and then analyzing the trend 

function to indirectly measure stability (Schneidewind, 1999). Li, Etzkom and Talburt 

(2000) examine process instability with empirical measures of object-oriented software 

evolution during the design phase.

We propose a direct measure of the multi-dimensional aspects of the volatility of 

software systems. Organizational theorists Wholey and Brittain (1989) describe 

environmental variation with three dimensions: amplitude, frequency and predictability 

of variation. A primary premise of our work is that software systems, particularly 

application systems, model their environments. As the business and technological 

environment grows and changes, software systems must also change (Lehman and 

Belady, 1985). This suggests that dimensional characteristics of environmental volatility 

measures could be adapted to describe software volatility. We define 3 dimensions of 

software volatility: amplitude, periodicity and deviation. Amplitude describes the 

magnitude of change and periodicity measures the time interval between software 

modifications. These two characteristics imply a smooth pattern of software 

modifications. While many naturally occurring physical phenomena may be described 

this way, software systems are unlikely to be so well behaved. We need a third 

dimension, deviation, to describe how closely a system's behavior follows the pattern 

implied by amplitude and periodicity.

2.2 AMPLITUDE

Amplitude measures the size of software modifications. Traditional measures for
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software size include lines of code (LOC), function point counts, token counts, equivalent 

size metrics, entity counts, percentages of changed programs and object-oriented methods 

(Boehm, 1997; Albrecht and Gaffney, 1983; Chidamber and Kemerer, 1994).

Amplitude can be measured as the sum of the size of all modifications made to a 

software system. Amplitude can be measured for each time period /, as;

•V,
Amplitudet = £  sizefmodificationj)

>■*
where N, is the number of modifications in time period t.

We can use any of the previously validated measures of software size for our 

measure Amplitude!. Division of Amplitude! by the total size of the system creates a 

bounded scale invariant measure. We refer to this as normalized amplitude, 

NAmplitudet.2

NAmpIitudet -  Amplitude!/'
(total size of software system at end of time period 0

NAmplitudet is the normalized measure of amplitude for time period t.

23  P e r i o d i c i t y

Periodicity measures time since software modifications (TSM). Manufacturing 

and production researchers define Mean Time Between Failures (MTBF) as the total unit- 

hours of operation divided by the total number of failures (Gaither, 1990). MTBF is 

calculated as a single value for the entire product lifecycle. Studies of software reliability 

find the Mean Time to Failure (MTTF) as the expected time the next software failure will 

be observed (Lyu, 1995). By definition, MTBF and MTTF are concerned only with 

failures or breakdowns.

* We use the term normalae to refer to a mathematical operation that eliminates units of measurement, i.e. we are 
creating normalized measures to show relative measures with respect to the maximum possible value. Measures 
normalized in this fashion will be scale invariant and bounded betweenO and I.
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We are seeking a measure of the time between software modifications, regardless 

of their purpose, e.g. corrective, adaptive or enhancement. Time since software 

modification, TSM, is the time (measured as days, weeks, months, etc.) elapsed since the 

previous modification.

TSMjt = TSM for change event j  in time period t ,
where t = system age.

Periodicity is the mean TSM for a system during time period t.

•V,
Periodicity, = jr ^ T S M j t ,

' i
where Nt = total number of change events during time period t

To make comparisons of Periodicityt across systems of different ages, we 

normalize Periodicity; by the number of time periods a system has been in existence at 

the end of time period t. Thus, normalized Periodicity for time period t, NPeriodicityt, is 

defined as:

NPeriodicityt = Periodicity; / 1.

2.4 D e v ia tio n

Deviation is the variance of the TSMj for the change events occurring in time 

period t. Deviation should express the variation in both amplitude and periodicity. By 

definition our measure of amplitude, NAmplitude; will vary over a software system's 

lifecycle, but not within each time period t. Therefore, the variance in amplitude will not 

contribute to deviation. However, periodicity, measured by TSMjt, will vary within time 

period /. We define Deviation as the variance of the TSMj; (variance(TSMj);).. 

Boundedness can be obtained by calculating the variance of normalized TSMJt, i.e. 

NTSM; = (TSMjt)/t We refer to the normalized variance as NDeviationt.

NDeviation; = variance(NTSM;)
= variance(TSMjt/t)
= (l/t2)variance(TSMj,)
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The mathematical properties of the elements of amplitude, periodicity and

deviation are shown in Table 1.

Construct
element

6 Real Numbers, 
for all j, t;

>0, for all j, t < 1, for all j, t

Amplitude Yes Yes No
Namplitude Yes Yes Yes
Periodicity Yes Yes No
NFeriodicity Yes Yes Yes
Deviation Yes Yes No
NDeviation Yes Yes Yes
Table I : Mathematical Properties of Proposed Measures

2.5 Ex a m ple  Ca lc u l a tio n  of  So ftw ar e  Volatility  M e a su r e s:

We demonstrate calculation of these measures with the following hypothetical

example. Assume system A is implemented with two programs, A1 and A2. The

evolution of system A is shown in Figure 1.

Program At 

Program A2

1

(r)
CalY7) O

Program A3 

Pro (ram A4

a - f  are change events indicating m odifications 
to program s A1 and A2.

Figure 1: Evolution of System A

For purposes of this example, assume the programs in system A all use a common 

programming language, and therefore lines of code (LOC) is an appropriate measure of
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software size. Assume Program A1 has 1000 LOC and A2 has 1500 LOC. At the end of 

the first month one software modification (change event a) is made to program Al. The 

modification size is 50 LOC. As shown in Figure 2, we calculate NAmplitudei = 

50/2500 = 0.02, NPeriodicityi = 1.0/1.0 = 1.00, and NDeviationi = variance({ 1.0)) / 1.0 

=  0 .00.

End of Month I Program size Modification size
(LOC) (LOC)

Al 1000 50
A2 1500
Total 2500 “To

Amplitude 
(N Amplitude)

0.02

Periodicity
(NPeriodicity)
Deviation

1.00

(NDeviation) 0.00
Figure 2: Evolution of System A - Month 1

Modification time 
since modification (in 

months) 
1.0

“To

At the beginning of the second month of operation program A3 is added to the 

system. Program A3 has 1200 LOC. During the second month of operation (0.8 through 

the month) a modification (change event b) involving 30 LOC is completed on program 

Al. At the end of the second month program A2 is modified for the first time (change 

event c). The modification involves 500 LOC. As shown in Figure 3, we calculate 

NAmplitude: = 1730/3700 = 0.47, NPeriodicity: = mean({0.8, 2.0, 0.0}) /' 2 = 0.47, and 

NDeviation: = variance( {0.8,2.0,0.0}) / 22 = 0.25.
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End of Month 2 Program size Modification size Modification time
(LOC) (LOC) since modification (in

months)
Al 1000 30 0.8
A2 1500 500 2.0
A3 1200 1200 0.0
Total 3700 1730 2.8

Amplitude
(NAmplitude) 0.47
Periodicity
(NPeriodicity) 0.47
Deviation
(NDeviation) 0.25
Figure 3: Evolution of System A - Month 2

Program A4 is added to the system at the beginning of month 3. Program A4 has 

500 LOC. Halfway through the third month program Al was modified by a software 

modification of 200 LOC (change event e). Two modifications are completed on 

program A2 with 100 LOC and 50 LOC, respectively. These modifications are 

completed on day 10 and day 25 of the month, respectively (change events d  and f). As 

shown in Figure 4, we calculate NAmplitude3 = 850/4200 = 0.20, NPeriodicity3 = 

mean({0.7,0.3,0.5, 0.0})/3 = 0.125, and NDeviation3 = variance({0.7,0.3,0.5, 0.0})/32 =

0 .01.
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End of Month 3 Program size Modification size Modification time
(LOC) (LOC) since modification (in

months)
Al 1000 200 0.7
A2 1500 100 0.3

50 0.5
A3 1200
A4 500 500 00
Total 4200 850 1.5

Amplitude
(NAmplitude)
Periodicity
(NPeriodicity)
Deviation
(NDeviation)

0.20

0.125

0.01

Figure 4: Evolution of System A - Month 3

The three dimensional measures of volatility describe changing behavior in the 

system. In this example we see that over time, amplitude is becoming larger 

(NAmplitude) and periodicity (NPeriodicity) is becoming shorter. System A starts as a 

"well-behaved" system with low deviation (NDeviation).
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Software Volatility for Example System A

1 - 

0.9 f -  

0.8 r  

0.7 -

X -
\

\ :
A r

'NPwiodlcity r 
A  -  NDavMBon

as

*  0.5
"5
>

0.4

2 31 month

Figure 5: System A Lifecycle Software Volatility

As summarized in Figure 5, software volatility for system A shows an increase in 

amplitude between the first and second months, and a decrease between the second and 

third months. Periodicity is the same in months 1 and 2, but sharply decreases in month 3. 

Deviation increases slightly between the first and second month, and then decreases in 

the third month. We can infer from this that modifications get larger from month I to 

month 2, then decrease in size between months 2 and 3. Decreasing periodicity between 

months 2 and 3 indicates that modifications are being made more frequently. An increase 

in deviation between months 1 and 2 indicates that there is a wider variance in the time 

intervals between modifications during the second month. Decreases in deviation, as in 

month 3, indicate a reduction in variance of the length of time intervals, i.e. modifications 

are being implemented at more regular intervals. Therefore, lower deviation indicates 

that the intervals between program modifications are nearly equal, and system behavior is 

becoming more uniform.
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In the next section we develop criteria for evaluation of the mathematical 

properties of software volatility measures. These criteria are then applied to our proposed 

measures. Subsequently we empirically validate the measures. We then measure 

software volatility of two commercial systems and interpret their lifecycle software 

behavior.

3 EVALUATION OF SOFTWARE VOLATILITY MEASURES
The prior sections introduced three software volatility metrics. These measures

should be rigorously evaluated and validated to see that they logically behave in a manner 

consistent with the real world phenomena being studied. We approach this task in two 

steps. First, we evaluate the measurement functions defined for amplitude, periodicity 

and deviation for appropriate logical and mathematical properties. Then, we evaluate the 

convergent, discriminant and predictive validity of these measures with empirical dat? 

from a software portfolio of legacy systems. Logical evaluation of the measurement 

functions, coupled with convergent and discriminant validity, will ensure that our 

measures of amplitude, periodicity and deviation are valid in a precise sense. Predictive 

validity is demonstrated empirically by the significance of these measures as explanatory 

variables in a predictive model. This demonstration expands the validation of these 

variables to external validity and illustrates the proposed measures' generalizability 

(Rosenthal and Rosnow, 1991). We proceed with evaluation of the logical and 

mathematical properties of the measurement functions for the dimensions of software 

volatility.

We build our criteria from traditional measurement theory and evaluation criteria 

used for other metrics (Allison, 1978; Weyuker, 1988; Chidamber and Kemerer, 1994). 

We start by building a set of evaluation criteria to test our proposed measurement 

functions from criteria used in previous research. Amplitude, periodicity and deviation
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are characteristics used to describe software volatility. The measurement functions we 

have defined are direct measures of these attributes. We have defined these measures 

with natural language to build intuitive understanding of the concepts, and with 

mathematical precision to reduce confusion and provide repeatable results (Finkelstein 

and Leaning, 1984; Churcher and Shepperd, 1995; Schnedewind, 1992). Situational 

context is important in the choice of which metrics and scales to apply Zuse and 

Bollmann, 1990). As Schneidewind (1992) points out, evaluation criteria should fit the 

context of intended use of the measure, and set reasonable validation criteria. We have 

defined measurement functions for three attributes for software volatility. Intuitively, we 

expect measures of these attributes to be non-negative, and to vary from one system to 

another and throughout a system's lifecycle.

To determine the criteria we should use for evaluating measures of software 

volatility, we start by listing attributes we logically expect from such measures. As with 

the Goal-Question-Metric paradigm (Briand, Morasca and Basili, 1999) the criteria used 

to evaluate measures of software system behavior must be relevant to our intuitive 

understanding of amplitude (size) and periodicity (time). We have defined system-level 

measures of software volatility. The definitions of these measures use aggregate 

functions to describe lifecycle system behavior. Therefore, we need aggregate measures 

that reflect combined behaviors. We defined system-level measures to allow the use of 

these measures in comparing software systems of different sizes, ages and technologies.

Allison (1978) uses several criteria for evaluating the mathematical properties of 

aggregate measures. Allison’s criteria include

(A-l) If all individual elements equal 0, the measure equals 0.

(A-2) If any element > 0, then the measure > 0.
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(A-3) The measure is scale invariant.

(A-4) The measure is bounded3

Allison's first two criteria are important in our evaluation. Allison developed 

aggregate measures to describe system-level changes. We are defining aggregate 

measures to describe changes in a system of programs. Behavior of individual software 

programs must be reflected by any system-level measure. Thus, we evaluate system- 

level measures to insure they will (1) be positive if any of the system elements has a 

positive measure, and (2) will be zero if the measures for all system elements are zero.

The properties of (3) scale invariance and (4) boundedness are essential criteria if 

software volatility measures are used to analyze lifecycle software behavior and to 

compare behavior of multiple systems. Scale invariance also makes measurement 

functions technology independent. This is an important characteristic for the 

measurement of software behavior as it allows the flexibility of comparing measures of a 

wider variety of systems and of the same system over time.

Weyucker (1988) identified 9 criteria for evaluating software complexity 

measures. Although the appropriateness and completeness of these properties have been 

widely debated, no specific alternative set of evaluation criteria has been proposed 

(Chemiavhy and Smith, 1991; Churcher and Shepperd, 1995; Roy, 2001). We examine 3 

of the 9 properties identified by Weyucker, and also used by Chidamber and Kemerer 

(1994) to evaluate software complexity metrics. These are (W-l) monotonicity, (W-2) 

noncoarseness and (W-3) equivalence. The other 6 criteria apply specifically to software

3 Allison (1978) used a fifth criteria, sensitivity to transfers, to see if a measure is affected by the principle 
of transfers when income is shifted from one group to another. This criterion applies mainly to measures 
for economic analyses and is not directly applicable here
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complexity metrics and are not relevant in evaluating system-level measures of software 

volatility.

The property of (W-l) monotonicity implies that the measure of a combined 

system (P+Q) would be larger than the individual measures of either P or Q alone 

(Weyuker, 1988). General monotonicity requires only that the measure of (P+Q) be no 

less than the measures of either P or Q alone (Tian and Zelkowitz, 1992). Logically, 

monotonicity would apply to absolute measures of volatility. The defined dimensional 

measures are relative measures normalized against the size or age of the system. 

Normalization is needed to satisfy the properties of scaled invariance and boundedness. 

After two subsystems are combined and the combined measures normalized, 

monotonicity requirements can no longer be applied. As discussed below, measurement 

qualities of scale invariance and boundedness are important for the analysis of software 

system behavior over complete life spans and across systems of varying size and age. 

For the purposes of our work, these qualities are considered more relevant than 

monotonicity.

We seek measures distinguishing differences in behavior between systems with 

divergent behavior, i.e. a system that is never modified and one that is modified on a 

daily basis. In addition, we need measures that will detect changes in lifecycle behavior,

i.e. volatility at time t may or may not be equal to volatility measured at a later time, t-n . 

In contrast, if two systems are the same size and age, and both are modified at the same 

time and with modifications of the same size, we expect software volatility measures for 

both systems to be equivalent The definitions for Weyucker's properties (W-2) 

noncoarseness and (W-3) equivalence describe these qualities.

Our fifth evaluation property (W-2) noncoarseness requires that any proposed
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metric provide variation in measurement4 More precisely, for a given measure, r\, there 

exist two entities, P and Q, for which the measures of those two entities will differ, i.e. 

given metric r\, 3 P, 3 Q, such that q(p) *  q(Q).

Similarly, it is also important that software volatility measures exhibit a sixth 

property, (W-3) equivalence. Thus, for a given measure, ti, there can exist two entities, P 

and Q, with the same measure, i.e. given metric T|, 3 P 3 Q such that ri(P) = r|(Q).

We now evaluate our proposed measures of amplitude, periodicity and deviation

against these 6 evaluation criteria. Table 2 summarizes the results of this evaluation.

Anwltoide Periodicitv Deviation
NAmplitude NPeriodicity NDeviation

1. If individual elements all = 0, so TRUE TRUE TRUE
does the measure

2. If any element > 0, then the TRUE TRUE TRUE
measure > 0

3. Scale invariance and technology 
indepedence

TRUE TRUE TRUE

4. Lower bound 0 0 0
Upper bound 1 1 1

S. Noncoarseness TRUE TRUE TRUE
6. Equivalence TRUE TRUE TRUE
7. Monotonicity Not

applicable
Not
applicable

Not
applicable

Table 2: Evaluation of Proposed Measures

3.1 AMPLITUDE OF SOFTWARE VOLATILITY

Evaluating amplitude measurement function NAmplitude according to our criteria

we find:

(I) If all individual elements equal 0, the measure equals 0: True - if the size of all 

modifications = 0, then all NAmplitudet = 0.

4 Noncoarseness is similar to the evaluation criteria of discriminative power described by Schneidcwind (1992).
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(2) If any element > 0, then the measure > 0: True > if at least one modification size > 0,

then NAmplitudet > 0.

(3) Scale invariance and technology independence: True by definition for all normalized

measures.

(4) Boundedness: Lower Bound = 0: NAmplitudet is bounded below by 0; Upper

Bound = 1: NAmplitudet is bounded above by 1 by definition.

(5) Noncoarseness: True - Software systems are of widely varying size, as are their

modifications. NAmplitudet will vary between systems and over time.

(6) Equivalence: True - Two systems, P and Q, of the same size can receive

modifications of the same size, making by NAmplitudet of P equal to 

NAmplitudet of Q.

3.2 P erio d icity  o f  So ft w a r e  V o la tility

Evaluating periodicity measurement function NPeriodicity according to our

criteria we find:

(1) If all individual elements equal 0, the measure equals 0. True • if all TSMjt = 0, then

all Periodicityi = 0, and all NPeriodicityt = 0.

(2) If any element > 0, then the measure > O.True - if at least one TSMjt > 0, then

Periodicityt > 0, and NPeriodicityt > 0.

(3) Scale invariance and technology independence - True for all normalized measures, by

definition.
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(4) Boundedness: Lower Bound - Periodicityt and NPeriodicityt are bounded below by 0

because all elements are non-negative real numbers: Upper Bound - Periodicity, 

is bounded above by t; NPeriodicity, is bounded above by 1; NPeriodicity, = 

Periodicity, It; Upper bound of NPeriodicity, = t/t = 1;

(5) Noncoarseness - True. Example: two systems, P and Q, are initially implemented on

the same day. Each receives one modification. P is modified on the 15th day of 

its first month of operation and system Q is modified on the 20th day of its first 

month of operation. NPeriodicity, for P is 0.5 and NPeriodicity, for Q is 0.67. 

NPeriodicity, will vary between systems and over time.

(6) Equivalence - True - Two system, P and Q, are initially implemented on the same

day. Each receives one modification on the same day. NPeriodicity, for P will be 

equivalent to NPeriodicity, for Q.

3 J  Deviatio n  o f  So ft w a r e  V o la tility

Evaluating deviation measurement function NDeviation, according to our criteria

we find:

(1) If all individual elements equal 0, the measure equals 0. True

(2) If any element > 0, then the measure > 0. True

(3) Scale invariance and technology independence * True for all normalized measures by

definition.

(4) Boundedness - Lower Bound: by definition, variance and NDeviation, are bounded by

0. - Upper Bound: by definition, NDeviation, is bounded above by 1.

3 - 2 0
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(5) Noncoarseness: True - Two systems, P and Q, are initially implemented on the same

day. Each receives one modification. P is modified on the 15th day of its first 

month of operation and system Q is twice, once on the 10th day of the month and 

once on the 15th day of its first month of operation. NDeviationt for P is 0.0 and 

NDeviation( for Q is 0.56. NDeviationt will vary between systems and across 

time.

(6) Equivalence - True - Two system, P and Q, are initially implemented on the same

day. Each receives one modification on the same day. NDeviationt for both P 

and Q is 0.0.

Therefore, our defined measures for amplitude, periodicity and deviation satisfy 

these 6 evaluation criteria In section 4 we now proceed to empirically validate these 

measures. We use empirical data from a longitudinal record of modifications to a 

software portfolio to test for convergent and discriminant validity. In section 5 we then 

illustrate predictive validity with a regression of software complexity against our 

proposed measures.

4 RESULTS FROM EMPIRICAL EVALUATION

4.1 Establish ing  V alidation  C riteria

The measurement functions for the amplitude, periodicity and deviation of

software volatility should now be evaluated empirically to establish external validity. 

There is no established set of universally accepted validation criteria for software metrics. 

As with evaluation criteria for the mathematical properties of software metrics, we now 

review some of the validation criteria used by other researchers examining software 

metrics.

Basically, a measure is valid if it accurately characterizes the attribute it claims to
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measure (Schneiidewind, 1992). Statistical validation of new measures is established by 

setting validation criteria, identifying appropriate statistical tests with confidence level a, 

and performing the appropriate tests. It is important to recognize that any particular 

metric may be valid with respect to certain criteria and invalid with respect to others 

(Schneidewind, 1992). Validation criteria used for testing new metrics must be relevant 

to the characteristics being measured.

It is important to consider both the statistical significance of the relationship and 

the degree of the association between the variables being analyzed (Baroudi and 

Orlikowski, 1989; Emam and Birk, 2000). We consider a correlation weak if it is 

statistically insignificant (p > 0.05) or has a low correlation ( I correlation I < 0.40 and 

strong correlation in the inverse is true.5

There are several types of external validity that may be addressed. This work 

examines three in particular, convergent validity, discriminant validity and predictive 

validity. Convergent validity is established by demonstrating a correlation between our 

new measure and a comparable measure of the same property. Discriminant validity 

demonstrates independence among the three measures of software volatility. By 

demonstrating the orthogonality of these measures, discriminant validity shows these 

measures describe three separate dimensions of software volatility. The criteria for 

establishing discriminant validity is to show weak correlations of each dimensional 

measure with each of the other two. Predictive validity can be demonstrated by testing 

predictive models and obtaining a strong correlation coefficient between independent and 

dependent variables (Emam and Birk, 2000; Brand, Morasca and Basili, 1999).

5 The cut-off value for strong conditions (0.40) is somewhat lower than a 0.50 level that might be established for 
condition coefficients when testing predictive validity (Donaldson and Weymark, 1980). In this case we seek to 
establish the existence of meaningful relationships between our measures of amplitude, periodicity and deviation and 
other comparable measures for those same concepts. Because the comparable measures we have used for convergent 
validation of periodicity and deviation are not bounded above, the assodation between our measures and those
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4.2 E m pir ic a l  Va lida tio n  o f  Pr o po sed  So ft w a r e  Vo la tility  M easures

In this analysts we use empirical data obtained from a large mid-Westem retailer

with a portfolio of 23 legacy systems, including more than 3,500 programs. Over the 

course of the portfolio’s 20-year history, software maintainers kept a detailed log of every 

modification to each program by recording implementation date, purpose, type of change 

and programmer responsible (Kemerer and Slaughter, 1999). The combined maintenance 

logs for the portfolio provide researchers with the raw data for detailed information of 

approximately 25,000 individual software modifications.

Convergent validity is supported by substantial correlation with conceptually 

similar metrics (Rosenthal and Rosnow, 1991). We demonstrate convergent validity of 

our measures of software volatility by calculating our 3-dimensional measures and any 

logically comparable measures of amplitude, periodicity and deviation for each system 

and comparing the correlation between each measure and its counterpart.

The irony of this comparison is that should completely satisfactory alternate 

measures exist, we would not be defining new ones. In each case, we have identified a 

comparable measure that should logically behave in a manner consistent with the 

constructed measurement functions we have introduced despite its other potential flaws. 

A comparable system-level measure for amplitude is the percentage of new programs in 

the system. Percentage of new programs is a coarser measure than NAmplitude. 

Percentage of new programs assumes that each program added is the same size as all 

programs in the system. As we are comparing the proportional change in size of the 

system with the proportional amount of modified code in the system, these two measures 

should behave similarly. Periodicity can be measured by the inverse of number of 

changes per time period. The correlation of NPeriodicityt and the number of

comparable measures will be weakened. Still we seek the strongest relationship possible, m an effort to define new 
measurement functions for these phenomena,
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modifications per time period can lie used to support convergent validity. Number of 

modifications per time period is a coarser measure of activity in the system. Its reciprocal 

will give an average of time between modifications for the period.6 However, number of 

modifications per time period is not bounded above, as is NPeriodicityt. This difference 

in the basic properties of NPeriodicityt and its comparable measure will weaken the 

strength of their association. However, analysis of the correlations between them should 

still be sufficient to provide evidence of convergent validity of NPeriodicity,. Coefficient 

of variation measure is logically comparable to our proposed measure of deviation.7 

Coefficient of variation for the TSM of a system during each time period t should provide 

an alternative measure for the degree of variance in the time intervals between 

modifications. However, coefficient of variation is not bounded above. This difference 

in the basic properties of our measure of deviation, NDeviation, and its comparable 

measure will weaken the strength of their association.

These comparable measures are not suitable substitutes for the measures we have 

defined. In each case these comparable measures fail at least one of the logical and 

mathematical evaluation criteria. However, they are useful in order to demonstrate 

convergent validity of our measures of software volatility by calculating our 3- 

dimensional measures and their logically comparable measures of amplitude, periodicity 

and deviation for each system and comparing the correlations between each measure and 

its counterpart.

Table 3 shows the correlation of our measure of NAmplitude and its comparable 

measure, the percentage of new programs in the system. The portfolio's 23 systems all 

show these measures to be strongly correlated with statistically significant correlations (p 

< 0.05) of magnitude > 0.40, supporting convergent validity for NAmplitude as a

6 This is similar to the calculation of MTBF that is based on the number of failures occurring over the full lifespan of 
the system (Gaither, 1990).
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measure of amplitude.

System Lifespan
(months)

Correlation(NAmplitude, 
% new programs)

p-value

System 1 96 0.8984 0.0000
System 2 201 0.9062 0.0000
System 3 89 0.9662 0.0000
System 4 69 0.9939 0.0000
System 5 235 0.9154 0.0000
System 6 223 0.9219 0.0000
System 7 85 0.9249 0.0000
System 8 234 0.9084 0.0000
System 9 96 0.9918 0.0000
System 10 246 0.9463 0.0000
System 11 62 0.9931 0.0000
System 12 122 0.9755 0.0000
System 13 87 0.9788 0.0000
System 14 189 0.8761 0.0000
System 15 137 0.9481 0.0000
System 16 125 0.9719 0.0000
System 17 73 0.9648 0.0000
System 18 120 0.9805 0.0000
System 19 66 0.9771 0.0000
System 20 195 0.9888 0.0000
System 21 110 0.9925 0.0000
System 22 212 0.9915 0.0000
System 23 129 0.9752 0.0000
Table 3: Correlations NAmplitude and % of New Programs

Table 3 lists the correlations of periodicity measured by NPeriodicity and its 

comparable measure, the number of modifications each time period. Twenty-one of the 

23 systems show statistically significant correlations (p < 0.05) with eleven strong 

correlations of magnitude > 0.40. These empirical results provide support for the 

convergent validity of NPeriodicity as a measure of periodicity.

7 Coefficient of variation is a measure of dispersion (Dess and Beard. 1984).
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System Lifespan
(months)

Correlation(NPeriodicity, 
Number of modifications)

p-value

System 1 96 -0.3555 0.0004
System 2 201 -0.6005 0.0000
System 3 89 -0.0587 0.5848
System 4 69 -0.5077 0.0000
System 5 235 -0.3381 0.0000
System 6 223 -0.5545 0.0000
System 7 85 -0.5462 0.0000
System 8 234 -0.5545 0.0000
System 9 96 -0.5685 0.0000
System 10 246 -0.5788 0.0000
System 11 62 -0.3966 0.0014
System 12 122 -0.2753 0.0022
System 13 87 0.1297 0.2312
System 14 189 -0.4780 0.0000
System 15 137 -0.2796 0.0009
System 16 125 0.1876 0.0362
System 17 73 -0.1598 0.1769
System 18 120 -0.3672 0.0000
System 19 66 -0.5201 0.0000
System 20 195 -0.4065 0.0000
System 21 110 -0.8368 0.0000
System 22 212 -0.3576 0.0000
System 23 129 -0.1838 0.0371
Table 4: Correlations of NPeriodicity and Number of Modifications

Table 5 shows that twenty of the portfolio's 23 systems have statistically 

significant correlations between deviation measured by NDeviation and its comparable 

measure, coefficient of variation. Twelve of the 23 systems show strong correlations 

with pair-wise correlations of magnitude greater than or equal to 0.40. These results 

provide support for convergent validity of NDeviation as a measure of deviation.
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System Lifespan
(months)

Correlation(NDeviation, 
Coefficient of Variation)

p-value

System 1 96 0.3528 0.0004
System 2 201 0.1717 0.0148
System 3 89 0.4264 0.0000
System 4 69 0.7159 0.0000
System S 235 0.4100 0.0000
System 6 223 0.4391 0.0000
System 7 85 0.1574 0.1502
System 8 234 0.2065 0.0015
System 9 96 0.5521 0.0000
System 10 246 0.1626 0.0106
Svstem 11 62 0.4769 0.0001
System 12 122 0.3545 0.0001
System 13 87 0.3073 0.0038
System 14 189 0.4525 0.0000
System IS 137 0.2281 0.0074
System 16 125 0.1722 0.0549
System 17 73 0.4707 0.0000
System 18 120 0.3851 0.0000
System 19 66 0.4953 0.0000
System 20 195 0.4590 0.0000
System 21 110 0.9559 0.0000
System 22 212 0.5822 0.0000
System 23
Table 5: Co

129
(relations of N

0.2644
Deviation and the Coefficient o

0.0025 
f  Variation

Discriminant validity is supported by a lack of correlation between conceptually 

unrelated measures (Rosenthal and Rosnow, 1991). Discriminant validity among 

amplitude, periodicity and deviation is demonstrated by weak correlations among 

NAmplitudet, NPeriodicityt and NDeviationt.

Correlations among the measures of amplitude, periodicity and deviation are 

calculated for each month in the lifecycles of the portfolio's 23 systems (Table 6). In 

nineteen systems there are weak correlations between NAmplitudet and NPeriodicityt (10

3-27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

were statistically insignificant and nine others had I correlation I < 0.40). Twenty-two 

systems show weak correlations between NPeriodicityt and NDeviationt (thirteen were 

statistically insignificant and nine others had I correlation I < 0.40). All 23 systems have 

weak correlations between NAmplitudet and NDeviationt (22 were statistically 

insignificant and one other had I correlation [ < 0.40). Thus, these data support

discriminant validity among these dimensions.

System Lifespan
(months)

Corr(NAmp!itude, 
NPeriodicity) | 
p-value

CORR(NAMPLIT
UDE,
^DEVIATION) | 
p-value

Corr(NPeriodicity, 
NDeviation) | 
p-value

System 1 96 -0.1677 i (0.1024) 0.05521(0.5931) 0.0157! (0.8794)
System 2 201 -0.3222 I (0.0000) -0.00791(0.9111) -0.0517 (0.4662)
System 3 89 -0.15261(0.1535) -0.0269 | (0.8025) 0.13941(0.1926)
System 4 69 -0.4731 (0.0000) 0.06201(0.6131) -0.27501 (0.0222)
System 5 235 -0.21621 (0.0008) -0.01261(0.8471) -0.15331(0.0187)
System 6 223 -0.29771 (0.0000) 0.1540 (0.0215) -0.1803 (0.0069)
System 7 85 -0.6191 | (0.0000) -0.0097 (0.9301) -0.2673 | (0.0134)
System 8 234 -0.2352 (0.0003) -0.0234 | (0.7216) -0.1065 (0.1042)
System 9 96 -0.4702 I (0.0000) -0.0106 I (0.9185) -0.19541(0.0564)
System 10 246 -0.2405 (0.0001) 0.01271 (0.8423) -0.0464 | (0.4691)
System 11 62 -0.1459 I (0.2577) -0.03441 (0.7909) -0.0724 | (0.5760)
System 12 122 -0.14861(0.1024) -0.0786 | (0.3897) -0.00271 (0.9761)
System 13 87 -0.1831 | (0.0897) -0.0935 I (0.3891) 0.2052 | (0.0566)
System 14 189 -0.23771 (0.0010) -0.0452 I (0.5368) -0.28131(0.0001)
System 15 137 -0.15521(0.0702) -0.12831(0.1352) -0.12821(0.1355)
System 16 125 -0.1712 I (0.0563) 0.0093 I (0.9180) 0.7901 I (0.0000)
System 17 73 -0.1563 (0.1867) 0.0200 (0.8664) 0.0065 | (0.9563)
System 18 120 -0.14241 (0.1207) -0.13581(0.1390) -0.1041 1(0.2578)
System 19 66 -0.35971 (0.0030) -0.03101 (0.8046) -0.3224 | (0.0083)
System 20 195 -0.1963 I (0.0060) -0.0436 | (0.5448) -0.2422 | (0.0006)
System 21 110 -0.5483 I (0.0000) -0.0123 I (0.8984) -0.2548 | (0.0072)
System 22 212 -0.26941 (0.0001) -0 0073 1 (0.9154) -0.17261(0.0119)
System 23 129 -0.14891 (0.0921) -U.0349 | (0.6947) -0.0155 I (0.8617)
Table 6: Correlations Supporting Discriminant Validity

In summary, the new measures have been evaluated for the mathematical 

properties we desire for aggregate measures of size and time. The empirical data support
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convergent and discriminant validity. Convergent validity tells us that these measures 

behave in a manner consistent with other logically comparable measures. Discriminant 

validity demonstrates that these three measures describe three different attributes of 

software volatility. We now illustrate the relationship between these measures and a 

traditional measure of a software characteristic, software complexity. By using a simple 

predictive model we test a multivariate regression of software complexity against lagged 

terms for amplitude, periodicity and deviation.

43  P r e d ic t iv e  V a l id i t y

Predictive validity is established by determining the degree to which a trait or

characteristic can predict future outcomes. To demonstrate the predictive validity of 

software volatility, we use a simple model for software complexity. We posit that 

software volatility in a previous time period will significantly affect software complexity 

in the current time period. Banker, Davis and Slaughter (1998) propose and support a 

model demonstrating the link between software maintenance processes and complexity. 

They show that maintenance activity results in increased levels of software complexity. 

In the same manner, we posit that increased software volatility from software 

modifications will result in increased software complexity. Our model uses the lagged 

software volatility dimensions of amplitudet-i, periodicity,.i and deviationt.i as 

explanatory variables.

complexity, = + ̂ a m p litu d e + fi2penodicity,_{ + /?3 deviation, A +e,

Software system complexity,, normalized by total system size,, is the dependent 

variable. There are a number of software complexity metrics available (Cook and 

Roesch, 1994; Harrison, 1990; Pressman, 1992). We ran empirical tests for this model
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using six different standard complexity metrics.8 In each case, the total system size 

measured in lines of code was used to control for system size and allow comparison of 

results between systems.9 Coefficients for the explanatory variables were estimated using 

ordinary least squares estimation procedures. The multivariate regression was estimated 

for each of the 23 systems, for each of the 6 normalized complexity metrics. In total we 

estimated 138 equations for our proposed measures of amplitude, periodicity and 

deviation, and 138 equations for the comparable measures of those same attributes.

The adjusted R2 for two-thirds of the estimated 138 regressions using our 

proposed measures was greater than or equal to the adjusted R2 for the corresponding 

estimates using the comparable measures. As one would expect, using software volatility 

to predict software complexity is more significant for more volatile systems. 

Summarized results of these estimated regressions are summarized in Table 7.

Software Complexity Metric:
Predictive Validity 

Average R squared Average R squared 
(proposed measures) (comparable measures)

McCabe’s 0.2646 > 0.2003
Halstead’s nl 0.3530 > 0.2798
Halstead’s n2 0.3478 > 0.2668
Halstead’s Nl 0.2803 > 0.1910
Halstead's N2 0.3160 > 0.2255
Calb 0.3694 > 0.2719
Table 7: Summary of Linear Regression Estimates for the Software Portfolio

Our results show no significant multicollinearity among the measures for 

amplitude, periodicity and deviation. Low mean Variance Inflation Factors, VIF, 

indicate a lack of multicollinearity among explanatory variables (Belsley, Kuh and 

Welsch, 1980). This provides further confirmation of the independence of amplitude, 

periodicity and deviation as unique dimensions of software volatility.

* These measures are McCabe's cyclometric measure, Halstead's primitive measures nl,n2,Nl and N2, and the number 
of calls (Cook and Rocsch. 1994; Hamson, 1990). Each was normalized by the total system LOC at timer.
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In summary, the three proposed measures (1) improve on standard existing 

measures in explaining variance of standard software complexity measures and (2) 

provide support for predictive validity.

5 DISCUSSION

How can managers use these dimensional measures of software volatility to 

interpret changes in lifecycle system behavior? We start with a graphical representation 

of amplitude, periodicity and deviation for an idealized completely stable system. Using 

the measurement function for amplitude, by definition NAmplitude, = 0 for each time 

period t when no software change events occur. Given the measurement function 

NPeriodicityt, as the number of software change events in time period t approaches 0, the 

limit of NPeriodicityt = 1. Hence, NPeriodicityt = 1 for any time period / in which no 

software change events occur. Given the measurement function NDeviationt, as the 

number of software change events in time period t approaches 0, the limit of NDeviationt 

= 0, i.e. NDeviationt = 0 for any time period t in which no software change events occur. 

Hence, NDeviationt = 0 when no modifications occur in time period t. If there are no 

software modifications in any time period throughout the productive life span of an 

idealized stable system, NAmplitudet = 0, NPeriodicityt = 1 and NDeviationt = 0, for all t. 

The software volatility for the lifecycle of a hypothetical idealized stable system would 

be graphed as in Figure 6.

9 All programs m each system were written in the same language (Jeffrey and Lawrence. 1979).
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iriodlcity
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Figure 6: Hypothetical Idealized Stable System

We compare this idealized stable system with two actual systems in our portfolio. 

System 7 appears to be fairly stable throughout its more than seven year life span. There 

were two brief periods of volatility. The first one occurred when system 7 was about 

eighteen months old. Amplitude increased to 0.2 and periodicity became short. The 

second period of volatility occurred when system 7 was between 65 and 70 months old. 

Periodicity fell and amplitude increased indicating more frequent and larger 

modifications. Deviation increased indicating that some programs in the system were 

changing frequently and others were not (See Figures 7a, b and c.)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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System 7 Periodicity
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Figure 7a: Lifetime Volatility System 7 - Periodicity
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Figure 7b: Lifetime Volatility System 7 - Amplitude
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System 7 Deviation
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Figure7c: Lifetime Volatility System 7 - Deviation

System 23 appears to be relatively stable for only the first 18 months of its 

productive life. Starting at approximately 18 months of age the system became volatile 

with frequent, relatively small software changes for the rest of its more than 10 year life 

span. Inconsistency of behavior between programs in system 23 is indicated by deviation 

measured by NDeviationt > 0 (See Figures 8a b and c.)'°

10 When amplitude, periodicity and deviation are plotted on the same graphical scale, changes in deviation are difficult 
to see. Even though all three are bounded bvO and 1, the magnitude of deviation as defined tends to be much smaller 
than the other two.
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Figure 8a: Lifetime Volatility System 23 - Periodicity
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Figure 8b: Lifetime Volatility System 23 - Amplitude
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System 23 Deviation
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Figure 8c: Lifetime Volatility System 23 - Deviation

We observe that lifecycle maintenance activity started about eighteen months 

after initial system implementation. Software managers can compare the behavior 

patterns of system 7 and system 23, and conclude that system 23 will require more 

constant levels of maintenance support while system 7 requires infrequent support This 

information can be useful for resource planning both in the short term, e.g. budgeting 

system support resources, and in the long term, e.g. as input to the "repair or replace" 

decision for an application system.

6 SUMMARY

The definition, evaluation and validation of a new system-level measure of 

software volatility contribute to the collective theory base for software evolution. A 

system-level multi-dimensional measure of software volatility makes it possible to 

develop a more complete picture of lifecycle software behavior. By presenting a multi­

dimensional measure of software volatility, software system change processes can be 

analyzed concurrently for the amplitude, periodicity and deviation of software volatility. 

We defined three measures describing these different attributes o f software volatility in
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order to facilitate its description as a dynamic behavior of software systems. By 

rigorously evaluating these measures, we establish a set of criteria for evaluation of 

software volatility measures. Evaluation criteria were developed from measurement 

literature and applied against our proposed measures. The proposed measures were then 

validated for convergent and discriminant validity. Their usefulness as predictors was 

demonstrated with a regression of complexity against lagged values of amplitude, 

periodicity and deviation. This multi-dimensional system-level software volatility 

measure provides technology independent measures that allow comparison of system 

behavioral changes over time and across systems. Interpretation of lifecycle volatility 

was demonstrated with empirical data for two software systems.

This work can be expanded by analyzing software volatility in a number of ways. 

The development of these direct, objective measures lays the groundwork for 

development of theoretical models of software system behavior. Theoretical models of 

the factors contributing to software volatility can be built and tested with parametric 

methods for regression analysis. Analyses can be used to build and test models of the 

drivers of software volatility and examination of the effects of software volatility on 

lifecycle software maintenance outcomes such as costs and errors.
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INTRODUCTION

"Why do we have to keep fixing this software? Why can't you write a good

system so we won't need these constant changes?" Most software managers have heard 

these comments from their users. The truth is that change is a constant in our world and 

information systems are no exception. Because they are embedded in their respective 

organizations, information systems affect, and are affected by, the organizations they 

serve (Lehman and Belady 198S; Pfleeger, 1998). Organizations must make constant 

adjustments to survive in a habitually changing competitive environment (Porter, 1980; 

Davis and Olson, 1985; Morgan, 1997). Information systems must also evolve to provide 

the information their organizations need to remain competitive. Because information 

systems must provide required information in a timely and accurate manner to the people 

and organizations that need it, the systems must constantly be maintained and enhanced 

to satisfy the information requirements of a perpetually changing organization.

Even facing these constant changes, many systems operate productively for 

decades. It is estimated that the average age for enterprise general ledger application 

systems in Fortune 1000 companies is 15 years old (Kalakota and Whinston, 1996).

Some information systems change a great deal during their productive lifespans, 

and others remain unchanged for months and years at a time. Does this automatically 

mean systems that change are bad, and those that never change are good? Is change 

always something to be avoided? If an information system remains stable and fails to 

change with its environment, the system may cause a drag on the organization and hinder 

organizational success (Truex, Baskerville and Klein, 1998). Therefore, it is important to
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understand the nature of change and the associated change processes for information 

systems.

Growth and change of information systems is accomplished through lifecycle 

software maintenance. To understand the nature of information system change we must 

understand the "dynamic behavior of programming systems as they are maintained and 

enhanced over their life times", i.e. software evolution (Belady and Lehman, 1976). 

Software change is a characteristic of the behavior of information systems as they evolve 

throughout their productive lifecycles. Software volatility describes software changes 

occurring as a result of lifecycle maintenance. By envisioning a longitudinal model of an 

information system changing to keep pace with changes in its environment, we see a 

system evolving along with its environment. Analysis of software volatility throughout a 

system's lifecycle, and across different systems, can improve our understanding of 

software change and system behavior. With this increased insight into software evolution 

researchers and managers can enhance their understanding of software evolution and 

improve management of lifecycle maintenance processes.

Some environments are more volatile than others. Some organizations change 

more than others. Some tasks are more variable than others. These differences result in 

differences in the volatility of information systems. At each level through this 

progression, entities cope with changes in surrounding environments through the 

dynamics of interfaces to each of those environments. The objective of this research is to 

identify those dynamic environmental attributes that drive software volatility in 

information systems. We start by examining factors in the competitive environment and 

work progressively inward toward more localized factors at the task environment and
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basic system levels, i.e. the system's inner environment All lifecycle maintenance 

activities, including corrective and adaptive modifications, enhancements and new 

program creations, serve as mechanism for software change (Pfleeger, 1998). Thus, we 

recognize that these lifecycle maintenance activities are catalysts for software volatility. 

Therefore, we build our conceptual model from two sets of prior research: research on 

drivers of software volatility, and research on drivers of lifecycle maintenance and 

software change.

In the remainder of this paper we build on this discussion by defining dependent 

and explanatory variables to develop a conceptual model of the antecedents of software 

volatility. After examining prior research and grounding theory for the influence of each 

of these concepts, we establish operational variables for these concepts. Seven 

hypotheses describe the relationship of each of these variables to our measure of software 

volatility.

Empirical data obtained from the 20-year maintenance logs of a large company 

are used to test the model through regression analysis. Regression estimates for the full 

lifecycle maintenance records of 23 information systems are analyzed. Results indicate 

that attributes of environmental interfaces at all levels drive software volatility.

By maintaining a system-level perspective we have built a predictive model for 

software volatility. Using this model, researchers can broaden and deepen their 

understanding of the transforming processes and dynamic behavior observed during 

software evolution. Managers can improve their ability to anticipate change and design 

adaptable systems while maintaining a lifecycle perspective for system support resource
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requirements. We begin by reviewing the relevant literature on software change and 

change processes in software evolution.

SOFTWARE EVOLUTION

Software change and change processes have been studied in a number of contexts.

One perspective for analyzing and understanding lifecycle software change is the study of 

software evolution. By its very nature software evolution occurs incrementally over long 

periods of time. Based in general systems theory, studies of software evolution 

emphasize longitudinal descriptions of system characteristics and the change processes 

affecting them. Using analytical methodologies a number of researchers apply a top- 

down systems approach describing the processes that affect information systems and the 

transformational forces that influence them (Lehman, 1977; Woodside, 1980; Lehman, 

1980, 1981,1984, Yau, Nicholl, Tsai and Liu, 1988; Perry, 1994; Lehman, 1998).

Based on a series of empirical and analytical studies, Lehman et al. have 

developed eight laws of software evolution for embedded systems (Lehman and Belady, 

1985; Lehman, et al., 1997). Much of the research on software evolution has sought to 

support these laws using relatively short data collection periods for operating systems 

software. (Lehman and Belady, 1985; Lehman, et al., 1997). Four of the eight laws on 

software evolution describe changes in system characteristics, while the other four deal 

with the interfaces and exchange of information between organizations and their 

embedded information systems (Lehman, et a l, 1997).

Current research on software evolution is headed in a number of different 

directions. Software evolution is providing a theoretical foundation for analysis of 

reverse engineering technologies and new perspectives on cost estimation tools. In
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addition, further work is being done on the FEAST/2 (Feedback Evolution and Software 

Technology) project, further investigating Lehman's eighth law, the Law of System 

Feedback (Lehman, et al., 1997).

SOFTWARE VOLATILITY

Another research perspective has concentrated on change processes and the

definition and measurement of software volatility. Prior research on volatility relating to 

information systems has described software volatility as change in software product, or as 

change in software process. Practitioners routinely track software product change with 

version numbers. Traditional system-level versioning fails to track the size or frequency 

of software changes. Researchers often rely on token counts of modifications to measure 

software product change (Butcher, 1997; Banker and Slaughter, 2000). Yau and 

Collofello (1980; 1985) developed a measure of system instability by calculating logical 

ripple effect based on counts of cyclomatic complexity in software modules.

Software process volatility is measured by counting changes in data models or 

objects during software design and development (Marche, 1993; Li, et al., 2000). Heales 

(2000) develops a software volatility index to measure effort spent on deep structural 

changes during software change processes. However, all of these measures fail to answer 

the question about how often information systems are changed.

Existing measures of token counts of modifications over time are usually 

maintained at the program or module level. We define an aggregate measure of software 

volatility at the system-wide level that can be calculated at different times throughout 

productive system lifecycles. By recognizing the connection between an information 

system and its environment, we build a model describing antecedents of software by
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examining dynamic factors in that environment. Our measure of software volatility is 

used to empirically test this model.

Software volatility is a characteristic of the dynamic behavior observed in 

software evolutionary processes. This dynamic behavior implies system change. Some 

systems change frequently, and some seldom change. Each information system evolves 

and changes at its own pace. We identify information system change as software 

volatility so we can identify and analyze the differences in the timing of these changes. 

To concentrate on the time dimension of this software volatility we measure the intervals 

between software modifications. Increases in software volatility will manifest 

themselves as changes that will occur at shorter, more frequent, intervals. Decreases in 

software volatility will be seen as less frequent, longer, intervals between changes. This 

could be measured as Mean Time Between Failures (MTBF) as has been done in some 

software research studies (Lyu, 1996; Gaither, 1990). However, the measures used in 

software reliability engineering are only modeled for corrective software modifications. 

For studies of software evolution we need to consider all software modifications, 

regardless of the motivation for change, e.g. corrective, adaptive, enhancement and new 

program creation. To facilitate an analysis of changes in lifecycle system behavior, the 

time dimension measure of software volatility needs to be calculable at specified time 

periods throughout a system's productive life span. MTBF is generally calculated once, 

or only a few times, during the useful life of an artifact (Gaither, 1990).

We use periodicity as a measure of the time dimension of software volatility to 

describe mean time intervals between software modifications (Barry and Slaughter, 

2000). Periodicity can be calculated as an aggregate measure at the system-wide level at
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any time interval needed for our analysis. This provides a descriptive measure to identify 

frequency of change. Periodicity will tell researchers and managers how often lifecycle 

software maintenance activities occur in each productive system. As we analyze 

software volatility we note that increased software modifications occur at more frequent 

intervals with decreasing periodicity. Alternatively, increasing periodicity indicates 

decreased levels of software volatility.

Software volatility can also be described by amplitude and deviation (Barry and 

Slaughter, 2000). Amplitude is defined as the size of software change, and deviation 

indicates the variation in behavior among systems. This research uses one dimension of 

software volatility, periodicity, as our dependent variable for two reasons.

First, the body of literature providing a foundation to identify antecedents of 

software volatility is most closely linked with token counts of modifications.

Modification counts are logically comparable to the reciprocal of periodicity (Barry and 

Slaughter, 2000). Therefore, we can construct our model using hypotheses with rationale 

from this body of research. Because our previous work demonstrated discriminant 

validity among periodicity, amplitude and deviation, the dimensions of software volatility 

(Barry and Slaughter, 2000). The independence of periodicity, amplitude and deviation 

requires separate models for each of the dimensions of software volatility. To maintain a 

strong focus for the current investigation we pursue a single line of investigation.

The objective of this research is to identify the factors that drive software 

volatility as measured by periodicity, as in Figure 1. In the next section we review prior 

work on drivers of software change to develop a conceptual model predicting software 

volatility.
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Software Volatility: 
Periodicity

Basic System Characteristics

Competitive Environment Interface 
Business Size

Task Environment Interface 
Organizational Role 
Maintenance Team Instability 
Purchased Software Package 
CASE tool use
Software Maintenance Profiles

Figure 1: Antecedents of Software Volatility

ANTECEDENTS OF SOFTWARE VOLATILITY

Each of the existing studies of software volatility uses a different definition and

measure of software volatility and, therefore, as a consequence, predictive models for 

software volatility identify a wide variety o f explanatory factors. Models predicting 

volatility of software products concentrate on those characteristics driving software 

change (Butcher, 1997; Banker and Slaughter, 2000; Yau and Collofello, 1980,198S). 

Those models predicting volatility of software process focus analysis on attributes of both 

the software process and software product (Marche, 1993; Li, et al., 2000; Heales, 2000).
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We draw from two bodies of literature to develop our model. First, we recognize 

that information systems are embedded in the overall general environment. As 

environments change, these information systems must change and evolve to remain 

productive. The mechanisms for this change is lifecycle software maintenance activities. 

Hence, we also examine existing models identifying drivers of software maintenance or 

software modifications. We start with the interface to the general competitive 

environment and progress to the localized task environment interface with the 

information system. We then examine the essential characteristics of information 

systems to assess their influence on levels of lifecycle software volatility.

Competitive Environment interface

All organizations exchange resources with their environments. Organizations

viewed as open systems participate in this exchange on a great many levels. More closed 

organizations may only exchange output with the outside world However, most 

organizations operate as open systems and are viewed that way. As open systems, 

organizations rely on surrounding environments for resources, including information 

resources, needed to succeed (Scott, 1992). To maintain their productivity, organizations 

must change to keep pace with the dynamic nature of their competitive environment 

(Porter, 1980; Morgan, 1997; Highsmith, 2000). Organizations faced with dynamic 

environments have an increased need for informational resources to meet competitive 

challenges. These increased requirements can be met by increasing the internal resources 

available. Resources required for survival are the most immediate and relevant focus for 

organizations interfacing with their competitive environment (Dess and Beard, 1984).
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An organization's ability to compete in the business environment and obtain 

needed resources can be crucial to organizational success. Size can be used as an 

indicator of the demand for an organization's products and services. Size is a dimension 

of organizational structure. Size indicates an organization's ability to compete against its 

cohorts for outside resources. Size is a variable on the interface between an organization 

and its environment. Size measures how much work an organization does (Scott, 1992).

Companies grow incrementally by building on their own success. Some large 

changes in company size occur through merger and acquisition, or divestiture of smaller 

companies or large company subdivisions. Any of these changes may affect information 

requirements and necessitate information system modification. If a business is involved 

in mergers and acquisitions, its information systems may need to be enhanced to provide 

services for new functional areas and increased services for a larger and more diverse 

constituency. These changes result in modification of information systems and increases 

in software volatility. Thus, we state the following hypothesis:

HI: Increasing business sice will increase software volatility, i.e. decrease 
periodicity.

Task Environment Interface

Each organization faces a number of varied tasks for its survival and success.

Task environments are created to denote the parts of the organization relevant to, or 

potentially relevant to, accomplishment of these tasks (Thompson, 1967). Information 

systems are the tools organizations use to solve problems and accomplish necessary 

tasks. Thus, changes in the task environment directly affect software volatility. Primary 

characteristics of any task environment define the task and identify its domain. They 

include problem complexity and the number and variety of its constituency. These
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characteristics are frequently reflected in the information systems created to support these 

tasks, and in the processes used to develop and maintain those systems.

We capture differences in task domain by identifying the functional domain of 

each information system. The relationship between an information system and its 

organization is the primary task environment interface. This relationship is a system's 

organizational role. This role can be described several ways. A system can be identified 

by the functional business area it supports, e.g. human resources, operations, etc. The 

timing and quantity of changes in different business areas will be reflected in the 

volatility' of systems supporting those functions. There are a number of ways to describe 

different functional roles performed by information systems. A system may serve a 

technical core function or a boundary-spanning function (Thompson, 1967; Scott, 1992), 

and there are different demands for the content and timeliness of information provided by 

boundary-spanners and non-boundary-spanners (Aldrich and Herker, 1977). Boundary- 

spanning information systems create and distribute information for users inside and 

outside an organization. Boundary-spanning information systems need to respond more 

often and more quickly to changes in an organization's external environment and produce 

new and different types of information as it become available. These systems may create 

annual financial reports for stockholders, monthly statements and special sales flyers for 

customers and online Just-In-Time delivery and inventory information for suppliers. 

Non-boundary-spanning information systems create information to be used within the 

organization, e.g. an organization's payroll system.

Information systems can also be used to provide buffers between external 

competitive forces and internal resources by influencing demand, leveling supply and
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demand of resources and product, forecasting and adjusting activities, and aiding with the 

organization's technical core (Scott, 1992).

Whether we examine the specific business area a system supports, the extent to 

which a system serves in a boundary-spanning capacity, or the strategic goal it facilitates, 

we are assessing the role the information system plays in its organization. Information 

systems spanning the boundary between one group and another, either within an 

organization or between an organization and the outside world, must be flexible and 

changeable to accommodate all stakeholders. Thus, boundary-spanning functional roles 

promote more volatility in the information systems supporting them. We formally state 

the following hypothesis:

H2: Information systems with boundary-spanning roles will have higher 
software volatility relative to those with non-boundary spanning 
roles, i.e. decreased periodicity relative to those systems with non- 
boundary-spanning roles.

A number of studies have analyzed task team and task processes as dimensions of 

task environment volatility because they serve as dynamic elements of the task 

environment interface (Dess and Beard, 1984). Both the maintenance team and the 

processes used to develop and maintain information systems serve as mechanisms for 

changing software.

Prior research on software maintenance and software evolution has shown that 

team factors significantly influence software maintenance processes (Perry, 1994; 

Slaughter, 1995; Dekleva, 1992; Kemerer, 1995). We theorize that team factors also 

affect software volatility. No one is as knowledgeable about source code as is the source 

code author (Sacks, 1994). When other programmers try to modify source code, they 

often have difficulty because they are less familiar with code written by someone else.
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Thus, changes in programmer-program assignments can result in increased errors and 

unnecessary modifications. Programmers unfamiliar with source code are likely to 

change the code more often, change more code than necessary, and change more 

programs than needed. If maintenance team members are uninformed of concurrent 

maintenance activities, software modifications may need to be rewritten and re-tested, 

forcing increases in software volatility. This maintenance team instability, i.e. changes in 

assignments and membership of the maintenance team supporting a system, can increase 

software volatility. The following hypothesis results:

H3: Increased maintenance team instability will increase software 
volatility, i.e. decrease periodicity.

Task processes and procedures represent the standard operating procedures and 

processes used by an organization to accomplish specific tasks. We concentrate on those 

processes in the task environment relating to development and maintenance of 

information systems.

Software development practices have been shown to affect the levels o f software 

volatility and lifecycle software maintenance (Lientz and Swanson, 1980; Banker and 

Slaughter, 2000; Heales, 2000). To begin examining differences in development 

processes we ask who developed the system. Software is often purchased from 

outsourcers because managers believe the organization lacks necessary in-house 

resources to create a reliable and efficient system (Lacity and Hirschheim, 1993; 

Kirkpatrick and van Scoy, 1993). Purchased packages are often assumed to require less 

lifecycle maintenance and expected to have reduced levels of software volatility. Under 

contractual agreement, the vendor often restricts maintenance of purchased software 

packages. Source code may be available for modification only to vendor personnel. In
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addition, many purchased information systems have lifecycle maintenance scheduled and 

controlled by the vendors. Outsourcers control lifecycle maintenance activities for 

purchased packages by scheduling modifications less frequently for large portions of the 

system, and install new versions of many system programs at the same time resulting in 

decreased software volatility, i.e. increased periodicity. This leads us to the following 

hypothesis:

H4: Purchased packages have decreased software volatility, i.e. increased 
periodicity.

Structured development practices encourage the design of structured systems. 

Computer-Assisted System Engineering (CASE) tools reinforce the use of structured 

system design and controlled development methodologies (Low and Leenanuraksa,

1999). CASE tool proponents emphasize the time and effort saved by software 

developers and maintainers in dealing with source code (Martin, 1989). These tools 

make it possible to reduce maintenance effort even while increasing the changes 

occurring in the source code. CASE tools encourage re-engineering and replacing source 

code rather than maintenance of existing code (Martin, 1989). CASE tools are used to 

help implement a single design philosophy in an organization throughout its many 

projects and information systems. CASE tools improve system documentation by 

facilitating the creation and revision of complete current system documentation (Hoffer, 

George and Valacich, 1996). Thus, CASE tools facilitate software maintenance 

processes. Availability of CASE tools promotes change because the tools make it 

relatively easy to change the software. This will tend to make software modifications 

more frequent and decrease periodicity. Therefore, we assert that use of CASE tools will
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increase software modifications and software volatility, as measured by decreased 

periodicity.

H5: Increased use o f CASE tools increases software volatility, i.e. 
decreases periodicity.

Lifecycle maintenance represents the largest force driving software modification. 

As much as 80% of the effort spent on information systems is expended during post* 

implementation lifecycle maintenance. The historical pattern of these incremental 

software changes can be used to describe a software change process composed of a 

variety of maintenance activities. Differences in patterns of these activities distinguish 

lifecycle maintenance processes used from one system to another. We refer to these 

historical patterns as lifecycle maintenance profiles. Prior research has shown that 

lifecycle maintenance profiles may vary widely from one information system to another, 

even among systems within the same organization. Research on software process 

volatility has shown the significance of prior modification profiles (Heales, 2000). For 

some systems empirical tests have demonstrated the significant contribution these 

profiles make in predicting software processing errors (Barry, Kemerer and Slaughter, 

1999). Software changes accomplished through addition, change or deletion of source 

code will all result in some level of software faults (Malaiya and Denton, 1999). These 

software faults will require correction, precipitating software modification and increasing 

software volatility. Hence, we assert that lifecycle maintenance profiles are significant 

drivers in a generalized predictive model of software volatility. Thus, we state the 

following hypothesis:

H6: Increases in lifecycle maintenance profiles will increase software 
volatility, i.e. decrease periodicity.
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Basic System Characteristics

Basic system characteristics are those attributes used to describe the essence of an

information system. If we look at the interface of an information system and its 

environment, we ultimately view the inner core, i.e. the inner environment, as the 

substance and organization of the system itself (Simon, 1994).

Information systems are among the most complex and abstract of any artifacts 

humans have created (Simon, 1994; Brooks, 1995). Basic system characteristics are 

inextricably linked to the characteristics of the tasks they address. An information system 

is an abstract construct of interlocking concepts representing data sets and relationships. 

The inherent properties of information systems are often reduced to measures of their 

complexity, size and age (Brooks, 1995).

Previous research on software volatility has identified some software 

characteristics relating to the volatility of software products, including structure and 

complexity (Banker and Slaughter, 2000). Software complexity is a basic software 

product characteristic. Software complexity has been linked to software product 

volatility (Yau and Collofello, 1980; Banker and Slaughter, 2000). Increases in software 

complexity are also associated with increased levels of software maintenance (Banker, et 

al., 1997). We recognize the complexity of an information system is a mixture of task 

complexity and the complexity of its implemented solution. Total complexity is a basic 

description of the system we analyze (Wood, 1986; Banker, Davis and Slaughter, 1998). 

Thus, increases in software complexity will increase necessary software maintenance 

and, in turn, increase software volatility, i.e. decrease periodicity. We formally state the 

following hypothesis:
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H7: Increased software complexity will increase software volatility, i.e. 
decrease periodicity.

Software size is also significant in predicting occurrence of software faults and 

software modifications (Kemerer, 1995; Banker, Datar, Kemerer, and Zweig, 1993). 

Larger programs and systems contain larger numbers of faults and require more 

modifications to correct those faults. System age is another basic system characteristic. 

Lehman et al. (1997) state three laws of software evolution describing system changes 

related to software aging.1 Work on software process volatility has also identified the 

significance of software size and age (Heales, 2000). Analyses of software evolutionary 

processes imply that software volatility increases with age. As information systems age 

we expect an increasing divergence between them and their environments. Resolution of 

these discrepancies requires software modification resulting in increased software 

volatility. System size and system age are exogenous variables included as control 

variables in our predictive models of software volatility.

Our seven hypotheses are summarized in Table 1. Directional relationships 

specified in hypotheses HI through H7 are diagrammed in Figure 2.

1 These are the Law o f Continuous Change (the 1* law), the Law o f Increasing Entropy (the 2nd law), and 
the Law o f Continuing Growth (the 6* law) (Belady and Lehman 1985).
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The model for software volatility, V, we will be empirically testing is:

V  =  ) + *

Where
fio = constant term
Pi Xi -  coefficient and explanatory variable for business size (as in H I) 
P2 X2 -  coefficient and explanatory variable for role (as in H2)
P3 X3 = coefficient and explanatory variable for maintenance team 

instability (as in H3) 
p4 X4 = coefficient and explanatory variable for purchased packages (as in 

H4)
PsXs=  coefficient and explanatory variable for CASE tool use (as in H5) 
Pi Xt, = coefficient and explanatory variable for maintenance profiles (as in 

H6)
P? X t -  coefficient and explanatory variable for complexity (as in H7) 
e = error term.
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Figure 2: Predictive Model for Periodicity

METHODOLOGY 

Research Site

The research site is a publicly owned mid-Western retailer with a portfolio of 23 

information systems, including 3500+ software programs. This portfolio supports work 

for human resources, fiscal, operations and merchandising business functions. The 

company supports this large and varied software portfolio with its centralized 

Information Systems (IS) department The IS department has separate development and 

maintenance units.

4 - 1 9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Data

During the software portfolio’s 20-year history, the IS department maintained a 

detailed log of every modification made to each program, providing researchers with 

detailed information about 25000+ individual change events, i.e. any software 

modification for correction, adaptation, enhancement or creation of new programs 

(Kemerer and Slaughter, 1999).

Other available system characteristics include counts of programs, paragraphs, 

lines of code and each of Halstead’s primitive measures (Conte, Dunsmore and Shen, 

1986). Each program is flagged to indicate that CASE tools were used during its 

development or maintenance support. A binary variable indicates systems purchased as 

software packages. The indicator was set by detecting a vendor's name as the source 

code author.

Measures

Operational definitions for the model's dependent and explanatory variables are 

listed in Table 2. Each variable is measured for each month of the productive life span of 

each information system.

The dependent variable periodicity is measured as the system-wide average time 

interval between software modifications, relative to system age. Periodicity is calculated 

monthly to allow analysis of variation in software volatility throughout the productive 

lifecycle of an information system. We measure periodicity relative to system age to 

allow analysis across systems and throughout a system's lifecycle.
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Explanatory variables in our predictive model of software volatility are grouped 

in three categories: (1) attributes of the competitive environment interface, (2) attributes 

of the task environment interface, and (3) basic system characteristics.

(1) Attributes of the Competitive Environment Interface: A company can adjust to 

changes in the competitive environment through growth, mergers and acquisitions, and 

divestiture of subdivisions. Changes in Business Size can be used to indicate these 

changes. We use annual revenue as a measure of business size2. Annual revenue is 

adjusted by the consumer price index (CPI) to correct for general economic conditions 

over the span of this longitudinal study.3

(2) Attributes of the Task Environment Interface: A number of attributes can be 

used to describe the task environment interface. The role an information system plays in 

an organization can be associated with the functional domain of the information system. 

Aldrich and Herker (1977) discuss the tension when acting as liason between groups 

from inside and outside an organization. They show that people and systems functioning 

in boundary-spanning roles face increased volatility in information requirements. This 

led us to hypothesize that information systems fulfilling boundary-spanning roles will 

have increased levels of software volatility. We operationalize these roles with dummy 

variables to indicate information system ownership by different functional areas of the 

company: human resources, operations, merchandising and fiscal. These functions each 

respond to the information needs of a different constituency. The human resources 

function serves internal stakeholders and would need information processing for such

2 Annual revenue was obtained from each year o f this publicly-owned company’s annual report to 
stockholders.
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things as payroll and benefits. We would expect information systems supporting the 

human resources function to facilitate internal information requirements and be a non- 

boundary-spanning function. In contrast, information requirements for the fiscal area 

would be set by a large and widely diverse group of stakeholders. Fiscal systems are 

required to produce specialized accounts payable systems and reports for the annual 

report o f stockholders. We expect these information systems to support a boundary- 

spanning function. We use a fixed-effects model in our parameter estimates to 

distinguish the functional domain for information systems in the portfolio.

The composition of an organization's software maintenance team can be used to 

describe maintenance team instability. The detailed information in the maintenance logs 

for the organization's portfolio allows us to count the number of times lifecycle 

maintenance activities are completed by a programmer different from the programmer 

previously assigned to support that program. A count of these programmer swaps is 

used as the operational variable to describing maintenance team instability. This variable 

is aggregated at the system level by summation of the programmer swaps for each 

program in the system, for each month in the system life span.

A simple binary variable is used to identify which systems were purchased 

software packages. This will indicate those information systems where the development 

process was outsourced.

Development and maintenance processes are also described by the use o f CASE 

tools in an information system. Each program in our portfolio was marked as using, or

3 All financial data adjusted by CPI reported by U.S. government and reponed in the 1999 World Almanac 
and Book o f Facts, p. H I.
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not using, a commercial CASE tool during development and maintenance. System 

CASE-tool-use is aggregated as the monthly count of programs in a system developed or 

maintained by CASE tools divided by the number of programs in the system, i.e. the 

portion of each system's programs using CASE tools. This calculation allows CASE- 

tool-use to vary from system to system and throughout the productive life span of 

individual systems.

Maintenance processes are described by software maintenance profiles.

Historical patterns of lifecycle software maintenance activities are classified by 

motivation for the modifications: corrective, adaptive, enhancement and new program 

creation. These variables were operationalized for our empirical tests by calculating the 

proportionate mix of corrective, adaptive, enhancement and new program creations for 

each month in each system's life span.

(3) Basic System Characteristics: Three essential characteristics of information 

systems are complexity, size and age. Software complexity can be broken down as 

component, coordinative and dynamic complexity (Wood, 1986; Banker, Davis and 

Slaughter, 1998). We use the following software product metrics for these complexities 

and normalize them by system size, i.e. total lines of code (LOC). Component 

complexity is operationalized as normalized system total unique operands, i.e. Halstead's 

n2/(LOC). Coordinative complexity is operationalized using normalized system total 

McCabe's cyclomatics, i.e. total cyclomatics/(LOC). Dynamic complexity is 

operationalized as normalized program calls, i.e. total calls/(LOC).

The operational measure of periodicity is normalized relative to system age. 

Therefore, we do not include system age as a separate explanatory variable in our
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predictive model. The control variable for system size is operationalized as current total 

LOC.

Construct Operational
Variable

Description Unit Of Analysis 
Varies...

HI

H2

H3

H4

H5

H6

Business size Annual revenue

Organizational
role

Maintenance
team
instability

Purchased
software
package
CASE tool
development
Maintenance
profiles

H7 complexity

System size

4-way fixed effects 
for business area 
supported 
Programmer swap 
count

Package

CASE tool use

Corrective mix

Adaptive mix

Enhancement mix

New program mix

Normalized
Component
complexity
Normalized
coordinative
complexity
Normalized
dynamic
complexity
Total LOC

By year 

By system

By system by month

By system

By system by month 

By system by month

Company's total annual revenue 
adjusted by CPI
dummy variables to indicate one of 
4 business areas: human resources, 
fiscal, operations, merchandising 
Count of each program modification 
completed by someone other than 
the previous programmer to 
maintain that program 
Binary variable 
1 = purchased package 
0 = not purchased 
System-wide average o f CASE- 
tool-use indicators 
poition of maintenance activities 
classified as corrective 
portion o f maintenance activities 
classified as adaptive 
portion of maintenance activities 
classified as enhancement 
Portion o f activities classified as 
new program creation 
System-wide count o f Halstead's n2 
(unique operands) normalized by 
system size
System-wide count o f McCabe's 
cyclomatics normalized by system 
size
System-wide count o f program calls 
normalized by system size

Control variable - current total lines By system by month 
of code in system

By system by month

Table 1: Antecedents of Software Volatility

Our data set was built using the variables in Table 1 for the full productive 

lifecycle of the 23 information systems in the company's portfolio. Data collection 

started for each information system on the date of its initial implementation, and 

continued until the end of the data collection period or until the system was no longer in 

use, whichever came first The result is an unbalanced panel data set containing 3201
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observations. We include lagged explanatory variables, i.e. for time period t-1, to 

accommodate our model predicting software volatility, i.e. periodicity, in time period t. 

This slightly reduces our panel to 3178 observations.

RESULTS

Descriptive Statistics

Table 2 reports descriptive statistics for each of the operational variables used in

our predictive model. Table 3 reports the inter-correlations. In the software portfolio

there are four information systems for the human resources area, seven for operations,

two for merchandising and ten for the fiscal area. Four of the 23 systems in the software

portfolio are purchased packages.

Variable -all systems
3178 observations in 23 systems

Mean Std. Dev. Min. Max.

Software volatility - periodicity 0.4826652 0.459903 0 1
Annual revenue 9487.367 3232.399 3443.309 14715.38
Programmer swap count 3.323474 6.278237 0 68
CASE-tool-use 0.1633094 0.2640052 0 1
Corrective mix 0.0674294 0.1577636 0 1
Adaptive mix 0.0407775 0.226535 0 1
Enhancement mix 0.3510842 0.392479 0 1
New program creation mix 0.1073055 0.258088 0 1
Component complexity: n2 / lines o f code 2188174 0608182 1191962 3940193
Coordinative complexity: McCabe's cyclomadcs 
/ lines of code

58445 25487 337224 1938202

Dynamic complexity: Calls /  lines o f code 0079633 0054584 0 0304348
Total LOC 188705.2 262514.7 187 1279163
System age (in months) 84.06671 59.31983 2 246

Table 2: Descriptive Statistics of Operational Variables

By definition and the construction of operational variables, there are upper and 

lower bounds on each of the relative measures, i.e. periodicity and each of the mix 

proportions. We note a relatively high correlation between CASE tool use and both 

coordinative and component complexity, and among the three measures of compkexity. 

We will expand our analysis of this after reviewing parameter estimate from regression
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results. We will clarify this further and eplain the implications later in the discussion

section.

annual revanue pi 
programmer swap 
count p3
CASE-tool-use 35 
corrective mix p6(1) 
adaptive mix p6(2) 
enhancement mot
P6(3)
new program creation 
mix P6(4)
component complexit
37(1)
coordinative compiexi 
37(2)
dynamic complexity 
37(3)
Total LOC

31
1

0.2444

33 P5 p6(1) 36(2) 36(3) 36(4) 37(1) 37(2) 37(3)

1

0.3387
0.2184
0.1419
0.4719

0.3286
0.1017
0.3384
0.3707

1
02754
02584
0.4039

1
0.0431
0.1079

1
0.1221 1

-0.0444 0.1033 0.0183 -0.0796 -0.0525 -0.1447 1

-0.3209 -02390 -0.6943 -02363 -0.1474 -0.3342 -0.0521 1

•0.3272 -02354 -0.4401 -0.1815 -0.1434 -0.3316 -0.0390 0.5380 1

0.1405 0.1865 0.5752 0.1573 0.1078 02193 0.0128 -02752 -0.1867 1

0.4647 0.3738 0.7817 02698 02553 0.3816 0.0043 -0.5927 -0.3643 0.4190

Table 3: Correlations of Operational Variables

Parameter Estimates

A predictive model for periodicity was estimated using Generalized Least Squares

methods. As is often the case with panel data, i.e. pooled time series data, we found 

evidence of serial correlation. A panel-specific correction for AR1 level serial 

correlation was employed after the Breusch-Godfrey test confirmed autocorrelation 

(Johnston, 1984). Separate regressions were run for each system's time series data.

These regressions reported a wide variation in Durbin-Watson statistics, indicating some 

systems had strong serial correlation, and some were hardly affected. This indicated that 

a panel specific correction would be more appropriate than using the same AR1 

correction for the entire panel. This was confirmed by comparison of Wald statistics 

from estimates using AR1 corrections against the Wald statistics from estimates using 

panel specific AR1 corrections.
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Estimated parameters for our predictive model of periodicity are reported in Table 

4 and results of hypothesis tests are reported in Table 5. Empirical tests support all but 

one of our hypotheses. Residuals were examined for outliers by identifying observations 

resulting in residuals more than three standard deviations from the mean residual (Neter, 

Wassennan and Kutner, 1990; Beisley, Kuh and Welsch, 1980; Baroudi and Orlikowski, 

1987). After removing 16 outliers, parameter estimates remained consistent with our 

original results.

As hypothesized, we find that increases in business size, team instability and 

lifecycle maintenance are associated with increased software volatility, i.e. decreased 

periodicity.

The estimated coefficient for component complexity, i.e. [N2/system-total LOC] 

has a sign opposite from that hypothesized (H7). We elaborate on this unexpected result

and provide a possible explanation in our discussion section.

Log likelihood = -667.5318 Wald = • • • * p s o . . o o i
N = 3178 4866.67 ** *P £0.05
Operational variable Estimated 0 p-value
Constant 0.9524293 0.000 Ml

Annual revenue (t-1) 0.0000229 0.000 ***
Business area ~ human resources -0.04S6381 0.137
Business area -  fiscal -0.0771880 0.006 **•
Business area ~  operations -0.0523706 0.031 *•
Programmer swap count (t-1) -0.0070583 0.000 *•*
Purchased package 0.1764679 0.000
CASE-use (t-1) -0.0954437 0.094
Corrective mix (t-1) -0.4380241 0.000 • • •
Adaptive mix (t-1) -0.4148038 0.000 ***
Enhancement mix (t-1) -0.4895813 0.000 •*«
New program creation mix (t-1) -0.4275023 0.000
Component complexity: n2 /  lines o f  code (t-1) 0.4609087 0.001 *•*
Coordinative complexity: McCabe's cyclomatics / lines o f code (t-1) 0.1815908 0.638
Dynamic complexity: Calls /  lines o f code (t-I) -1.5444250 0.305
Total LOC (t) •0.0000001 0.002 • ••

Table 4: Regression Estimate for Drivers of Periodicity
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Supported9 Predicted Hypotheses concerning Competitive Environment Interface.
•** « p<0..001 sign
•* * p £ 0.05

HI Yes - Increasing business size will increase software volatility.
H2 Yes ** Information systems with boundary-spanning roles have 

increased volatility, i.e. decreased periodicity, relative to those 
with non-boundary-spanning roles.

H3 Yes *•» - Increased maintenance team instability will increase software 
volatility.

H4 Yes + Purchased packages have decreased software volatility.
H5 • Increased use o f CASE tools increases lifecycle software 

volatility.
H6 Yes • Increases in software maintenance profiles will decrease 

periodicity.
H7 No - Increased software complexity will decrease periodicity

Table 5: Hypotheses test results

DISCUSSION

We built our conceptual models for drivers of software volatility based upon the 

literature in software evolution and lifecycle software maintenance. We used a measure 

of periodicity of lifecycle software maintenance activities as a measure of software 

volatility. By emphasizing the close connection between information systems and their 

environments, we built a predictive model for the antecedents of software volatility, i.e. 

periodicity. Focusing on environmental influences, these antecedents are identified from 

the dynamic attributes of interfaces between information systems and the competitive and 

task environments. We also included attributes of the basic information system to 

represent the core inner environment of all systems. Parameter estimates for our 

predictive model of periodicity lend strong support to this approach. In the following 

paragraphs we discuss the results for characteristics of each environmental level.
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Competitive Environment Interface

Business size operationalized as annual revenue is negatively related to

periodicity of software volatility. Thus, growing businesses will face increased software 

volatility and more frequent software modifications to their information systems 

portfolio. This provides support for hypothesis 1. While perhaps intuitive, this result (1) 

alerts managers to build this effect into their cost planning, and (2) allows us to interpret 

the other effects in the model with greater confidence.

Task Environment Interface

We hypothesized that the organizational role influences the volatility of an

information system supporting that role (H2). The predictive model demonstrates the 

significance of organizational role, i.e. functional domain, supported by each information 

system. Information requirements for each information system vary according to the 

tasks assigned. As a result, we expected information systems supporting boundary- 

spanning activities to have higher levels of software volatility as compared to those 

supporting non-boundary-spanning activities. Boundary-spanning activities share 

information between organizations.

The organizational role of the information system is a significant driver in our 

empirical model as indicated by the significance of the group of fixed-effects variables 

designating business area (F -  24.398, p-value = 0.00) (Greene, 1997). The functional 

domains supported by information systems in four business areas have distinctly different 

levels of software volatility (F = 21.49173, p-value 0.00) (Greene, 1997). Using the 

merchandising group as a reference group, we observe that the fiscal systems have the
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lowest periodicity and are, thus, the most volatile. This is as we expected for boundary* 

spanning systems like the information systems supporting the fiscal domain.

As hypothesized, increases in maintenance team instability will increase software 

volatility and decrease the time intervals between software modifications, i.e. decrease 

periodicity (H3). Managers should be mindful of the effect of changing the programmer- 

program assignments for lifecycle maintenance. Increased swapping of programmer 

assignments will cause more software modifications than if the program's sequential 

modifications are handled by the same programmer. The implicit knowledge 

programmers collect as they familiarize themselves with a program and modify it is not 

likely to be easily or completely transferred. If the program is assigned to a different 

programmer each time modifications are required, each person must build their 

knowledge of the program for each change. Unnecessary modifications may result as 

newly assigned programmers familiarize themselves with the source code.

As expected, purchased software packages are modified less frequently and have 

lower periodicity, than information systems developed in-house (H4). Even though these 

results seem counter-intuitive, they are consistent with results in Banker and Slaughter 

(2000), showing that the use of CASE tools promotes increased levels of software 

volatility (H5). Dekleva (1992) describes use of CASE tools as one way to judge the 

amount of structure in system design, associating strong structuring techniques with use 

of CASE tools. Banker & Slaughter (2000) show that more highly structured systems 

have higher levels of volatility, i.e. more modifications. The results we obtain 

demonstrate a negative relationship between CASE tools and periodicity, our parameter 

estimate, though marginally significant, indicates that CASE tool use results in more
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frequent system modification, providing further support for the Banker and Slaughter 

result. Thus, CASE tools increase software volatility. This seems counter-intuitive until 

we remember that CASE tools were never designed to stabilize software, only to make it 

easier and less time-consuming to change.

Increases in lifecycle maintenance profiles increase software volatility, i.e. 

decrease periodicity (H6). We operationalized historical patterns of lifecycle maintenance 

profiles with four variables representing the proportion of lifecycle maintenance activities 

devoted to each motivating maintenance category: corrective, adaptive, enhancement and 

new program creation, respectively. Their combined values indicate the presence, or 

absence, of lifecycle maintenance activity in time t-1. We used historical patterns of 

lifecycle maintenance activities, i.e. software maintenance profiles, for time t-1 to predict 

software volatility. Our results indicate that lifecycle maintenance activity in time period 

t-1 will increase software volatility during time period t.

Basic System Characteristics

Prior research shows that increased software complexity will increase software

maintenance effort (Banker, Datar, Kemerer and Zweig, 1997). We hypothesized that 

increased complexity will increase software changes, thus increasing software volatility 

and decreasing periodicity (H7). Software complexity was operationalized three ways; as 

component complexity, as coordinative complexity, and as dynamic complexity. This 

reflects the types of cognitive complexity programmers face in creating task solutions 

with their source code. Our parameter estimates yield a positive coefficient for 

component complexity and insignificant coefficients for coordinative and dynamic 

complexities.
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Component complexity is measured as Halstead's n2 normalized by system total 

LOC. Because Halstead's n2 counts unique data elements, high levels of component 

complexity indicate information systems with relatively high levels of data-intensity. 

There is research to indicate data intensive systems are more stable than those based on 

process-driven models (Martin, 1989; Hoffer, George and Valacich, 1996). Our model 

estimates for component complexity appear to support those findings.

Coordinative complexity and dynamic complexity measure the complexity of 

decision branching in each program, and the call structure between programs within the 

system, respectively. To make the inherent complexity of any task easier to deal with, 

problem solvers often reduce complexity by breaking the task into smaller chunks 

(Simon, 1994). By encouraging the creation of smaller, reusable programs, CASE tools 

promote this same approach in re-engineering and maintaining software (Martin, 1989; 

Low and Leenanuraksa, 1999). This change in design will also affect measures of 

component and dynamic complexity.

CASE tools generate source code by using heuristics designed to create systems 

with a large number of short reusable programs. These programs are accessed by 

program calls. Thus, systems relying on CASE tools for source code generation will 

have higher levels of dynamic complexity. CASE tools are used to generate programs 

with simpler logic flow. These programs will have reduced coordinative complexity. 

Once again, we note the relatively high correlation between the use of CASE tools and 

measures of system complexity (con(CASE-tool-use, component complexity) = -0.6943; 

corr(CASE-tool-use, coordinative complexity) = -0.4401; corr(CASE-tool-use, dynamic 

complexity) = 0.S7S2). Pair-wise correlations also indicate that systems with more
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programs generated by CASE tools are larger and have, on average, larger programs 

(corr(CASE-tool-use, system size) = 0.7786; corr(CASE-tooI-use, average program size) 

= 0.8394; corr(CASE-tool-use, programs in system) = 0.4115). These correlations lead 

us to conclude that, in general, CASE tools generate systems with more programs of 

smaller size. These programs have lower values of component and coordinative 

complexity. They have higher complexity, i.e. they have increased levels of program 

calls per LOC. By encouraging reuse of code, CASE tools generate programs to perform 

generalized functions and use program calls to access those programs from other 

programs in the system.

To check for the effects of multicollinearity among the measures of complexity 

and CASE-tool-use, we re-estimated the model by omitting each of the four variables 

individually. The results were consistent with those we obtained with the full model in 

Table 4.

CONCLUDING REMARKS

This research contributes to the breadth and depth of our understanding of the

antecedents of software volatility. Our analysis indicates that dynamic attributes of the 

environmental interfaces can be used to predict periodicity in software volatility. We 

view an information system's environment as organized in successive layers, i.e. the 

competitive environment, the task environment and the inner environment of the system 

itself. We find that dynamic attributes describing an information system's interfaces to 

each of these environments are significant drivers of software volatility.

Increasing business size can increase volatility by shortening the interval between 

software modifications, i.e. decreasing periodicity. Increases in business size can
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indicate the acquisition or creation of new business units. These additions will have new 

or changed information requirements. In addition, constituencies for existing systems 

may increase. The need to satisfy information requirements for additional users will 

result in an increased need for software modifications and increases in software volatility.

When organizations are viewed as open systems, the boundaries between them 

become difficult to identify. Depending on organizational structure, there are boundaries 

within organizations, between sections, departments and divisions. Information is often 

shared between subdivisions or departments, or between a company and its strategic 

partners. In the aftermath of mergers and acquisitions, information systems that had 

previously been viewed as non-boundary spanning may become boundary- spanning. 

Recognition of the tie between software volatility and the functional domain it supports 

can include the need for flexibility in supporting boundary-spanning activities at any 

level of an organizational hierarchy. Use of fixed-effects variables for business area 

classifications capture a number of differences in the volatility in task environments and 

their association with information system behavior. A more detailed classification of the 

task performed and its associated functional domain would provide researchers with a 

greater understanding of this source of volatility.

Purchased software will be modified less frequently, i.e. software packages have 

increasing periodicity. The decision to buy a software package is often based on an 

expectation of improved software quality and less need for software maintenance. Our 

findings appear to confirm this. Many software vendors control lifecycle maintenance by 

grouping modifications and releasing sets of changes, or new system versions at one
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time. This would result in lengthened intervals between modifications and increased 

periodicity.

We speculate that CASE tool use may be interfering with the effect complexity 

has on software volatility. The objective of CASE tools is to reduce the effort needed for 

software development and modification. However, CASE tools generate larger systems 

with more short programs. The individual programs are less complex, but have increase 

levels of dynamic complexity, i.e. more program calls per LOC. CASE tools also 

encourage re-engineering and regeneration of source code. Because CASE tools allow 

code generation with relatively little programmer effort. Thus, CASE tools break the 

connection between size and complexity of software and effort required to create and to 

maintain that software. For the same reason, we believe the same interference is 

affecting the results we obtain in examining the relationships between sofware volatility 

and CASE tools.

We can use historical patterns of software maintenance activities, i.e. software 

maintenance profiles, to predict software volatility. Our results indicate that lifecycle 

maintenance activity in the previous time period will increase subsequent levels of 

software volatility.

Increased component complexity, indicating data-intensive systems, will decrease 

software volatility and increase periodicity. Systems with relatively high numbers of data 

elements are likely to be relatively stable.

Implications fo r Future Research

This research expands our understanding of software evolutionary changes by

searching for drivers of software volatility, i.e. software change. By relating the time
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dimension of software volatility to the dynamic attributes of environments surrounding 

an information system we have identified significant factors affecting software volatility, 

i.e. periodicity. We learned that factors from each level of the general environment 

contribute to software lifecycle changes.

In our discussions about software volatility we find it very easy to make implicit 

assumptions about software volatility. Software volatility is often viewed as bad, or 

something to be avoided. We don't really know this to be true. Future work should 

examine the effect of software volatility on software maintenance outcomes. Researchers 

should also examine the moderating effect of software volatility on the influence of other 

factors in predicting lifecycle maintenance costs or processing errors.

Implications for Practice

We return to our original questions: "Why do we have to keep fixing this

software? Why can't you write a good system, so we don't need these constant changes?" 

We often assume software volatility, i.e. software change, is bad, and should be avoided. 

By recognizing the connection between information systems and their surrounding 

environments, we see that change is often unavoidable. With the continued presence of 

long-lived systems we understand that unchanging information systems can have 

negative consequences. Consequently, practitioners should view software evolution and 

software volatility as inevitable. Our identification of the drivers of software volatility 

can help software managers by focusing attention on those drivers within a manager's 

control while anticipating resources needed for software lifecycle maintenance task.

This work has demonstrated the effects that managerial decisions concerning 

software sourcing, CASE tool use and staffing assignments can have on software
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volatility and system behavior. It is too easy to make the assumptions that all software 

volatility is bad and immediately leads to increased maintenance costs. These valid 

questions are beyond the scope of this work. However, the ability to anticipate levels of 

software volatility will help managers become more proactive in dealing with lifecycle 

software maintenance.

By measuring software volatility and identifying the factors driving volatility, 

researchers and practitioners can all improve their understanding of the transformations 

occurring during software evolution. Knowing which factors influence software 

volatility, researchers and managers can focus on controllable factors to improve 

management of software evolutionary processes.
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INTRODUCTION
Information systems (IS) managers universally cope with the task of lifecycle software 

maintenance. Despite the importance of software maintenance, IS managers deal with 

management of software maintenance in a predominantly reactive, rather than proactive, manner. 

This is partially due to the difficulty in forecasting lifecycle maintenance outcomes and 

predicting lifecycle maintenance resource requirements.

Many information systems serve their organizations for upwards of fifteen years 

(Kalakota and Whinston, 1996) and outlive the tenure of the programmers and IS managers that 

develop them (Swanson and Dans, 2000). To forecast lifecycle maintenance outcomes, IS 

managers need to deal with currently implemented systems. The system characteristics and 

management decisions from system development may no longer be available. Current legacy 

systems may vary from those originally implemented. In fact, an information system may 

change so much that original characteristics may no longer resemble the current system. Task 

and organizational environments can change dramatically during the years an information system 

is in productive use. Lifecycle maintenance processes are used to enhance information systems 

allowing them to evolve in parallel to their surrounding environment (Pfleeger, 1998). We 

recognize these life-long transformation processes as software evolution.

As Swanson and Dans recently observed, lifecycle maintenance activities are forward- 

focused procedures striving to lengthen the productive life of an information system (Swanson 

and Dans, 2000). Likewise, in this research we focus on prediction of lifecycle maintenance 

outcomes to improve lifecycle maintenance management by enhancing predictive models of 

maintenance outcomes, i.e. processing errors and maintenance costs.
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By sustaining a forward perspective we use information about a current information 

system and its recent changes. The objective of our research is to use basic characteristics of the 

current system and characteristics o f its recent software evolution to predict lifecycle 

maintenance outcomes, i.e. software processing errors and lifecycle maintenance costs. What 

effect does software evolution have on future maintenance costs? If two information systems are 

described with identical size and complexity, should we expect them to have the same 

maintenance costs and error rates? Do their different lifecycle maintenance histories, i.e. their 

different patterns of software evolution, affect subsequent error rates and maintenance costs?

In this study we examine the relationship between software evolution as described by 

and lifecycle maintenance outcomes. Software evolution is formally defined as the "dynamic 

behavior of programming systems as they are maintained and enhanced over their life times" 

(Belady and Lehman, 1976). We describe software evolution with two main characteristics, i.e. 

lifecycle maintenance profiles and software volatility.

Maintenance profiles describe what type of lifecycle maintenance activities have 

occurred, and software volatility describes when changes occur, how large they are, and how 

consistently changes permeate the software system. Maintenance profiles are historical patterns 

of software maintenance activities. The type of change motivation, i.e. corrective, adaptive, 

enhancement and new program creation, categorizes these activities.

We describe software volatility as a multi-dimensional phenomenon with attributes of 

periodicity, amplitude and deviation. Periodicity tells us how often software changes. Amplitude 

tells use how much software changes. Deviation indicates the relative variance in length of 

change intervals for programs in the system.
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Using the results of this study, researchers can observe the effect of software evolution on 

lifecycle maintenance outcomes. IS Managers can apply these results to improve their budgets 

for software maintenance resources. With an improved ability to predict software processing 

errors and maintenance costs, IS managers can include anticipated system error rates when 

looking at decisions concerning software system repair or replacement.

In the next section we combine the relevant literature on software maintenance outcomes 

and software evolution to present eight hypotheses as a basis for our proposed model predicting 

lifecycle maintenance outcomes. Dependent and explanatory variables are operationalized, and 

the model empirically tested using panel regressions. Separate panel regressions estimate model 

parameters for prediction of maintenance costs and software processing errors. Our results 

indicate that IS managers can use traditional software product attributes and descriptors of 

lifecycle maintenance profiles and software volatility to predict software maintenance outcomes.

SOFTWARE MAINTENANCE OUTCOMES
Post-implementation lifecycle maintenance of information systems accounts for as much

as 80% of the lifetime costs of an information system (Bennet, 1996). For many organizations,

lifecycle maintenance activities consume more IS resources than new development (Swanson

and Dans, 2000). The resources expended in lifecycle maintenance can strain budgets and

prevent organizations from having the time and money needed for new software development.

When processing errors occur, managers frequently chase obscure, yet pressing problems with

few diagnostics describing the cause of those problems (Swanson and Beath, 1990). If software

managers could predict the frequency of production problems they will face, they could become

more proactive, and their ability to plan and manage their work would be greatly enhanced.
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We examine existing models of software maintenance outcomes. These outcomes 

include software processing errors and lifecycle maintenance costs. Each time maintenance 

activities modify software there is a change in system processing that can lead to errors. We also 

include costs, in dollars and in hours of effort. After examining current models of software 

maintenance outcomes, we build our model based on basic characteristics of currently 

implemented systems and elements of recent software evolutionary processes.

DRIVERS OF MAINTENANCE OUTCOMES
At any point in time an information system is the cumulation of an implemented

information system and post-implementation software evolution. We start by examining factors

that determine software product characteristics.

Basic System Characteristics
Brooks (1995) describes the basic characteristics of an information system as its

complexity, size and age. Complexity has been shown to be a significant factor contributing to 

software maintenance outcomes. Increased complexity has been associated with increased 

software errors, increased software faults and increased effort for lifecycle software maintenance 

(Shen, et al., 1985; Banker, et al., 1991; Takahashi, 1997, Banker Davis and Slaughter, 1998; 

Banker and Slaughter, 2000; Banker, et al., 2000; Graves, et al., 2000). Increased software 

complexity is associated with programs that are more difficult to maintain and enhance. Extra 

effort is required to understand what the program source code is intended to accomplish and why 

it needs to be changed (Heales, 2000). Increased complexity makes it more difficult for 

programmers to change existing code or add functionality without disturbing the logical flow of 

processing in the original design. Thus, increased complexity will subsequently lead to an 

increase in processing errors and increase maintenance costs because the result will be even more
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complex programs that are difficult to maintain without causing errors. This leads to the 

following hypothesis:

HI: Increased system complexity will increase software processing errors and lifecycle 
maintenance costs.

System size and age are inherent attributes of an information system. These are both 

system characteristics shown to relate to software processing errors and maintenance costs 

(Lehman, et al., 1997; Davis and Olson, 1985; Graves, et al., 2000; Banker, et al., 2000; Heales, 

2000; Eick, et al., 2001). We will use measures of software size and average program age as 

control variables in this study.

Software Evolution
Software evolution is defined as the "dynamic behavior of programming systems as they 

are maintained and enhanced over their life times" (Belady and Lehman, 1976). Software 

evolution can be described by the accumulative effect of lifecycle maintenance activities on 

information systems after their implementation. Lifecycle modifications are small incremental 

changes that gradually transform a system. Rather than having the revolutionary impact of new 

system implementation, these changes are evolutionary, gradually transforming information 

systems to stay productive for the organization.

Software evolution has been studied from the general systems theory approach for several 

decades, e.g. see Lehman and Belady, 1985, etc. Empirical research has led to a series of laws 

describing behavior of information systems. Now we use characteristics of software evolution to 

help with the IS management problem of predicting lifecycle maintenance outcomes. We 

describe software evolution with two main characteristics, i.e. lifecycle maintenance profiles and 

software volatility. Lifecycle maintenance profiles describe what types of changes are made to
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the system and drive evolutionary processes. Software volatility measures the extent, timing and 

predictability of those changes.

Basic system characteristics and software evolution are used as explanatory variables in 

our conceptual model for software maintenance outcomes. Every information system is 

subjected to software evolution to one degree or another. We use software volatility to describe 

dynamic system behavior, and lifecycle maintenance profiles to describe maintenance processes 

driving software evolution.

Lifecycle Maintenance Profiles
Past research has used information system histories and prior maintenance activities to

predict future levels of software maintenance costs and software faults or errors (Biyani and 

Santhanam, 1998; Gefen and Schneberger, 1996; Lientz and Swanson, 1980; Banker, et al.,

2000; Banker and Slaughter, 2000). Similarly we seek a quantifiable descriptor of the type of 

lifecycle maintenance work previously done to help anticipate future outcomes.

We use software maintenance profiles as attributes describing the processes driving the 

transformations occurring as part of software evolution. These activities can be classified 

according to their motivation: corrective, adaptive and enhancements (Lientz and Swanson, 

1980). We can further classify maintenance activities by functional subcategories, i.e. data 

handling, logic, computation, initialization, user interface and module interface (Barry, Kemerer 

and Slaughter, 1999).

A number of researchers have presented taxonomies of lifecycle maintenance activities to 

describe major types of maintenance work (Swanson and Beath, 1990; Lientz and Swanson, 

1980; Pressman, 1992). IEEE standards have listed these as corrective, adaptive and
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enhancement Some authors include categories for perfective and preventive maintenance 

(Pressman, 1992). The empirical work that has been done tends to report most of the 

maintenance effort as perfective (Lientz and Swanson, 19S0, p. 68; Barry, Kemerer and 

Slaughter, 1999).

To develop a taxonomy of lifecycle maintenance activities we examine the primary 

motivations for software maintenance. Thus, we establish main activity categories corresponding 

to the original classifications of corrective, adaptive and enhancement. We add a fourth main 

category for new program creation.

Historical patterns of lifecycle maintenance activities are referred to as software 

maintenance profiles. Each system has its own history and unique software maintenance profile. 

We theorize that different types of maintenance activities will have different effects on future 

software processing errors and maintenance costs. Based on software reliability models, 

increased corrective activities should lead to reduced future levels of software processing errors 

and thus, lower maintenance costs (Lyu, 1996). We state the following hypothesis:

H2: Increased corrective maintenance profiles will decrease software processing errors 
and lifecycle maintenance costs.

Adaptive maintenance activities change software programs to conform to changes in their 

surrounding environment As opposed to enhancements, adaptive modifications add no new 

functionality to an information system. These software modifications are only intended to 

preserve the status quo. Continuing to operate a system after it no longer conforms to new 

technological circumstances can cost an organization (Truex, Baskerville and Klein, 1998).

Even though an information system may continue to operate without processing errors, 

additional expense may be encountered as additional software maintenance or manual processing
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to compensate for a system that is not up-to-date. Thus, adaptive activities would eliminate the 

need for this additional software maintenance or manual processing to cover the gap between an 

old information system and the current business environment Thus, we state the following 

hypothesis:

H i: Increased adaptive maintenance profiles will decrease software processing errors 
and lifecycle maintenance costs.

Enhancement activities change software programs by adding new functionality to an 

information system. New program creations expand the functionality of a system by adding new 

programs to a system. Changing and adding new source code to a system from enhancements or 

new programs is likely to introduce software faults and result in increased processing errors for 

later periods (Malaiya and Denton, 1999). Increases in processing errors will necessitate 

software modiications to correct those newly introduced software faults. We propose the 

following hypotheses:

H4: Increased enhancement profiles will increase software processing errors and 
lifecycle maintenance costs.

HS: Increased new program creation maintenance profiles will increase software 
processing errors and lifecycle maintenance costs.

Software Volatility
Software volatility describes dynamic behaviors by measuring software change. Software 

volatility is a characteristic of the dynamic behavior of the programming systems as they evolve, 

i.e. as they are maintained and enhanced throughout their productive life spans (Belady and 

Lehman, 1976). This lifecycle software change is in many respects inevitable. It is necessary 

for systems to keep pace with the changing environments surrounding them (Lehman and 

Belady, 1985; Pfleeger, 1998). These evolutionary processes are important Information
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systems that fail these transformations can cause a drag on their organizations, resulting in a cost 

of stability (Truex, Baskerville and Klein, 1998). We include software volatility in our model to 

determine what its effect on maintenance outcomes.

Prior research has shown that software volatility affects software maintenance costs and 

errors (Butcher, 1997; Banker and Slaughter, 2000; Yau and Collofello, 1980,1985; Banker, et 

al., 2000). Heales (2000) develops a software volatility index to measure effort spent on deep 

structural changes during software change processes. Malaiya and Denton (1999) use analytical 

methods to show that software change, i.e. volatility, results in increased levels of software 

errors. Other researchers have used empirical studies to show that prior software changes result 

in increased amounts of maintenance effort and software errors (Biyani and Santhanam, 1998; 

Lientz and Swanson, 1980; Eick, et al., 2001; Banker, et al., 2000).

Software change or volatility is a multi-dimensional phenomena and it should be 

described by a multidimensional measure to show how often software changes, how much it 

changes and how predictably changes occur. Due to the close ties between information systems 

and their environment we use multi-dimensional measures of software volatility based on a 

multi-dimensional measure of environmental volatility developed by Wholey and Brittain 

(1989). We describe software volatility with a multi-dimensional measure containing 

periodicity, amplitude and deviatioa

Periodicity describes how often information systems change. Amplitude describes how 

much information systems change. Deviation describes how predictably the systems behave 

(Barry, Kemerer and Slaughter, 2001). We define measures that can be calculated at each time 

interval, e.g. week, month or quarter, during a system's post-implementation productive life span.
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Thus, periodicity, amplitude and deviation can capture variations in lifecycle behavior of 

information systems.

Periodicity describes time intervals between software modifications. This is the system- 

wide mean of time intervals between software modifications for the time period being studied, 

e.g. week or month. We measure periodicity relative to system age to allow analysis across 

systems and throughout a system's lifecycle. Increased levels of software modification are 

believed to lead to an increase in processing errors (Graves, et al., 2000). Increases in processing 

errors will by necessity lead to increased maintenance costs in order to correct the cause of those 

errors. As we analyze software volatility we note that decreasing periodicity indicates that 

software modifications occur at more frequent intervals. We use periodicity at time t-l to predict 

processing errors and maintenance costs at time t. Remembering that shortened intervals 

between modifications indicates increased software volatility, we are led to the following 

hypothesis:

H6: Decreased periodicity will increase software processing errors and lifecycle 
maintenance costs.

Amplitude describes the magnitude of change by measuring the total size of system 

modifications each time period. We establish a relative system-level measure of amplitude as 

the change in application system size and normalizing by total system size. Several size metrics 

are available, including token counts of executable lines of code (LOC), function points, model 

objects and entities (Boehm, 1984; Albrecht and Gaffney, 1983; Grady, 1987; Symons, 1988). 

We use amplitude as a relative measure of how much software has changed. Increased 

amplitude in time period t-l is used to predict counts of processing errors and lifecycle 

maintenance costs for time period /. More modifications, i.e. greater amplitude, in time period t-
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/  leads to a greater likelihood of introduction of software errors, resulting in an increase in 

software processing errors and subsequent maintenance costs for time period t. This leads to the 

following hypothesis:

H7: Increased amplitude will increase software processing errors and lifecycle 
maintenance costs.

Deviation describes the variance of the time intervals between software modifications. 

This measure indicates how consistent the change interval is for programs in an information 

system. A high deviation indicates that the system has a few programs modified at short 

intervals and some with very long intervals. A high deviation indicates that intervals between 

software modifications vary widely across programs in the system. The behavior of the system 

is harder to predict Expertise needed for software changes will vary as well. This could lead to 

an increase in mistakes while source code is changed, and unnecessary effort expended when 

programmers try to support a larger subset of programs in the system. This could lead to 

increased software processing errors and increased maintenance costs. Therefore, we pose the 

following hypothesis:

H8 : Increased deviation will increase software processing errors and lifecycle 
maintenance costs.

Control Variables
Prior research indicates that as application software usage increases, so does the detection 

of processing errors (Biyani and Santhanam, 1998; Yuen 1985; Dekleva, 1992). System usage 

influences the number of software processing errors uncovered (Banker, et al., 2000). Software 

that is not executed will not have any errors detected, nor will it require software maintenance. 

Thus, we include application usage as a control variable.
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Our eight hypotheses are summarized in Table 1. Directional relationships are 

diagrammed in Figure 1. Our predictive model for software maintenance outcomes will be 

empirically tested and results summarized in the next two sections.

system size (t-l)

system age (t-I)

complexity (t-1)

^software product y

profiles (t-l)

y
application

usage(t)

software volatility: 
periodicity (t-l) 
amplitude (t-l) 
deviatioa (t-l)

\  software evolution /

s  lifecycle 
f  maintenance ^

/ outcomes

software
processing

error rate(t)

lifecycle
maintenance

costs(t)

\

/

■^stem usage

Figure 1: Model of Predictors of Maintenance Outcomes

METHODOLOGY
To test the hypotheses in Table 1 we estimate the following models:
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Error-rate, = f a -  0/ complexity,./ -  fo  corrective profile,. / -  0$ adaptive profile,./ -  
0 4  enhancement profile,./ 0 s new program creation profile hi -  fa periodicity,.} 
+ 0 7  amplitude,.} + 0 s deviation,./ t  0 9  system size ~ &

Costs, = 0o ~ 0i complexity,./ -  0 2  corrective profile,.} -  0} adaptive profile,.i * 0 4  

enhancement profile^ -  0 s new program creation profile,.} -  fa  periodicity,./ -  
0 7  amplitude,./ + fa  deviation,./ + fa  system size * 0 /o application usage -  e

Hypothesis Test
HI Increased system complexity will increase software processing errors and lifecycle 

maintenance team costs.
HI: Pi > 0

H2 Increased corrective maintenance profiles decrease software processing errors and lifecycle 
maintenance costs.

H2: pi < 0

H3 Increased adaptive maintenance profiles decrease software processing errors and lifecycle 
maintenance costs.

H3: Pj < 0

H4 Increased enhancement profiles will increase software processing errors and lifecycle 
maintenance costs.

H4: p4 > 0

H5 Increased new program creation profiles will increase software processing errors and lifecycle 
maintenance costs.

H5: pj > 0

H6 Decreased periodicity will increase software processing errors and lifecycle maintenance costs. H6: P6 < 0
H7 Increased amplitude will increase software processing errors and lifecycle maintenance costs. H7 : p7 > 0
HS Increased deviation will increase software processing errors and lifecycle maintenance costs. H8: P« > 0
Table 1: Hypotheses to be tested

Research site:
The research site is a large national retailer with a software portfolio of 23 legacy systems 

of 3500+ programs. The retailer has a large, centralized Information Systems (IS) department 

that handles information processing for all of its various department stores. The Retailer’s IS 

department has separate development and maintenance units. Software maintainers keep a 

detailed log of every modification made to each module by recording implementation date, 

purpose, type of change and programmer responsible.

Other available characteristics of each program include measures of system size, age and 

complexity. Application usage statistics include number and types of transactions processed 

(online vs. batch). These factors are combined with outcome measures for processing errors and 

maintenance costs.
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Measures
Operational definitions for each of the model's dependent and independent variables are 

listed in Table 2. Our predictive model uses explanatory variables for time period t-l to predict 

outcomes in time period t.

Software Maintenance Outcomes
Maintenance outcomes are measured as software processing error rates and maintenance

costs. Counts of software processing errors are token counts of abnormal terminations during

transaction processing, i.e. abends. We measure software processing error rate as the number of

abends per transaction processed (# abends / # transactions). Lifecycle maintenance costs are

measured as hours of effort expended for all lifecycle maintenance activities each quarter for

each system of the software portfolio.

Basic System Characteristics
We include software complexity as a key descriptor of a system. Because an information

system is conceived and created as a tool for problem solution, the complexity of a system

reflects the complexity of the task it addresses. Thus, descriptors of cognitive complexity

describe the complexity of a problem, as well as the complexity of its solution

Cognitive complexity breaks system complexity into three types: coordinative,

component and dynamic complexity (Wood, 1986; Banker, Davis and Slaughter, 1998).

Coordinative complexity examines the logic flow within each program of the system.

Component complexity examines the data intensity of a system. Dynamic complexity

corresponds to the overall complexity of the entire system by measuring the linkages between

programs or elements in the system.
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Coordinative complexity is operationalized as the system-wide total of cyclomatic 

measures of logic flow complexity (Gill and Kemerer, 1991). We operationalize component 

complexity as the system-wide number of unique operands in the system, i.e. Halstead's n2 

summed over all programs in a system. Dynamic complexity is operationalized as the system- 

wide total number of program calls. Each of the complexity measures is normalized with respect 

to system size.

System size and age are control variables in our model. In addition, system size is used 

to normalize complexity measures.

Lifecycle Maintenance Profiles
Lifecycle maintenance profiles summarize historical patterns of the types of lifecycle

maintenance activities that have occurred. We use four main activity categories relating to the 

motivation for each system modification: corrective, adaptive, enhancement and new program 

creation. Our empirical data provides a detailed log allowing classification of system 

modifications. The centralized systems development and maintenance staff maintained in-house 

standards requiring a record of who made the who made each software modification, when it was 

implemented, what was modified and why. These maintenance logs were maintained in a special 

section of the source code in each program throughout the software portfolio. System counts for 

each category and subcategory are aggregated by system.

We operationalize lifecycle maintenance profiles to indicate the main type of activity 

occurring in each system each time period. Once again, we use profiles from time period t-l to 

predict outcomes in time period t. To do this, we count activities for each main activity category, 

and calculate the proportion of lifecycle maintenance activities for each category that time
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period. We established four binary variables to indicate which main category of lifecycle

maintenance activity was predominant for each system in that period.1 For example, suppose

system XXX had ten system modifications this month. Five (50%) were enhancements, three

(30%) were new program creations, one (10%) was corrective and one (10%) was adaptive. We

set our four profile variables as follows:

Profile - corrective 0
Profile - adaptive 0
Profile - enhancement I
Profile - new program creation 0

As with the other explanatory variables in our model, we use t-l profile values to predict

maintenance outcomes in time period t.

Software Volatility
Software evolution is described by two attributes: software volatility and lifecycle 

maintenance profiles. We describe software volatility with normalized measures of periodicity, 

amplitude and deviation. Periodicity is operationalized as the mean time interval between 

system modifications. Amplitude is the total change in system size normalized with respect to 

total system size. Deviation is the variance in the lengths of time intervals between system 

modifications. Periodicity and deviation are normalized with respect to system age.

Periodicity, amplitude and deviation are aggregate measures calculated for each time 

period in our empirical data. Empirical data to predict maintenance costs are aggregated 

quarterly. Tests of models predicting software processing errors are aggregated monthly. We use 

values of periodicity, amplitude and deviation for time period t-l to predict maintenance costs in 

time period /.

1 Ties are handled by assigning the value to the first non-zero proportion.
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Construct Operational
variable

Description Unit of analysis 
varies....

HI System
complexity

Normalized
Component
complexity

System-wide count o f Halstead's n2 (unique 
operands) normalized by system size

By system by 
quarter

Normalized
coordinative
complexity

System-wide count o f McCabe's 
cyciomatics normalized by system size

Normalized
dynamic
complexity

System-wide count of program calls 
normalized by system size

H2
H3
H4
H5

Software
maintenance
profiles

Profile o f main 
activity for 
software lifecycle 
maintenance

Binary variable to indicate this is most 
prevalent type o f lifecycle maintenance 
activity this quarter - there are four variables 
for each o f four main categories of 
maintenance activities (corrective, adaptive, 
enhancement, new program creation)

By system by 
quarter

H6 Software
volatility

Periodicity Mean time interval between software 
modifications normalized with respect to 
system age

By system by 
quarter

H7 Software
volatility

Amplitude Change in system size normalized by 
system size

By system by 
quarter

H8 Software
volatility

Deviation Variance in length of time intervals between 
software modifications normalized with 
respect to system age

By system by 
quarter

Table 2: Operational Explanatoiy Variables 
Data

The retailer's software portfolio includes 23 applications, 21 with batch processing and 18 

with online processing. A detailed log recorded all lifecycle maintenance activities in each of the 

3500+ programs. Data include what modifications were made, who made them and when each 

software modification was implemented. Quarterly data is available for maintenance costs, 

maintenance effort, vendor costs, transactions processed online and batch, and processing errors 

online and batch. Using these data a panel data set was built for the 23 applications covering 10 

quarters. Two systems were not in production for the full 10 quarters. Missing values caused 

some observations to have irreconcilable values. These records were dropped prior to regression 

estimates. This leaves an unbalanced panel with 192 observations.
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Total monthly processing errors are available for each system for 3 1 months. Processing 

errors, i.e. abends, are categorized separately for online and batch processes. Likewise, we tested 

our model with separate regression estimates of online and batch abends using an unbalanced 

panel data set with 688 observations.

RESULTS 
Descriptive Statistics

Table 3 lists summary statistics for the monthly panel data set Frequency counts for the 

binary profile variables are listed in Table 4. Summary statistics for the relevant variables in the 

quarterly panel data set are listed in Table S. Table 6 lists frequency counts for the binary profile

variables in the quarterly panel data set. Correlations are listed in Tables 7 and 8.

Variable N Mean Sid. Dev. Minimum Maximum
# online transactions (t) 665 603136.8 972288.4 0 9167362
# batch transactions (t) 665 764.7235 1073.836 0 7184.2
Total function points (t-l) 665 2364.647 1603.668 273 5482
Average program age (in months) 665 71.61239 48.63827 18.55263 230.5
Total Cyclomatics / total LOC (t-l) 665 0.0516164 0.0110005 0.0353499 0.0810833
Total n2 / total LOC (t-l) 665 0.2013791 0.553793 0.1239131 0.3558856
Total calls /  total LOC (t-l) 665 0.0082747 0.0048862 0.0008251 0.0156295
Software volatility - periodicity 665 0.265109 0.3805316 0 1
Software volatility - amplitude 665 0.0080517 0.042706 0 0.8145953
Software volatility • deviation 665 0.0076945 0.0194198 0 0.1994759
Table 3: Summary statistics of monthly panel data set
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Profile (t-l) N Freq = 0 Freq = 1

oll£

% = 1
Profile • corrective 665 639 26 96.09 3.91
Profile • adaptive 665 655 10 98.50 1.50
Profile - enhancement 665 231 434 34.74 65.26
Profile - new programs 665 632 33 95.04 4%

Profile enhancement 
subcategorv (t-l)

N I II © Freq = 1

©ll£

% = 1

Data handling 665 519 146 78.05 21.95
Logic 665 415 250 62.41 37.59
Computation 665 662 3 99.55 0.45
Initialization 665 662 3 99.55 045
User interface 665 643 22 96.69 3.31
Module interface 665 665 0 100.00 0.00
Table 4: Frequency counts of Binary variables - monthly panel

Variable N Mean Sid Dev. Minimum Maximum
Ln(lifecycie maintenance hours) (t) 180 4.756355 4.83937 -18.42068 7.907651
Ln(# batch transactions) (t) 194 4.528112 7.755914 •18.42068 9.807131
Ln(# online transactions) (t) 194 7.865331 12.35231 -18.42068 16.88S41
Total function points (t-l) 194 2385.247 1657.912 273 5482
Average program age (in quarters) 199 32.95181 18.29137 7.3333 72.5
Total Cyclomatics/total LOC (t-l) 194 0.0529539 0.010193 0.0386465 0.0810837
Total n2 /  total LOC (t-l) 194 0.2042366 0.0542459 0.1388885 0.3558856
Total calls / total LOC (t-l) 194 0.0076707 0.0049431 0.0008251 0.0154845
Software volatility - periodicity 194 0.2048901 0.3086835 0.007 1
Software volatility • amplitude 194 0.0311604 0.0973654 0 0.8268304
Software volatility - deviation 194 0.0172412 0.0360195 0 0.3100103
Table 5: Summary statistics of quarterly panel data set

Profile (t) N

0ll1

Freq = I * ii © % = 1
Profile - conective 194 187 7 96.39 3.61
Profile - adaptive 194 192 2 98.97 1.03
Profile - enhancement 194 36 158 18.56 81.44
Profile - new programs 194 187 7 96.39 3.61

Profile enhancement 
subcategorv (t-l)

N Freq® 0 Freq = 1

©It£

% = I

Data handling 194 147 47 75.77 24.35
Logic 194 124 70 63.92 36.08
Computation 194 187 7 96.39 3.61
Initialization 194 190 4 9794 2.06
User interface 194 188 6 96.91 3.09
Module interface 194 194 0 100.00 0.00
Table 6: Frequency counts of Binary Variables - quarterly panel

5 - 1 9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Monthly panel data act Pro­
file-

total Aver- Total Total Total
functio age cyclo- n 2 1 calls /
n points prog- madcs/ total total

(t-I) run  age total LOC LOC COtTeC
(t-1) LOC (t-1) (t-I) tive

(t-1) (t-1)

Avenge program age (t-I) -0.2104 I

Totalcydom adcs/total LOC (t-l) -0.1161 0.1917 1

Total n 2 /to ta l LOC (t-1) -0.2555 0.0311 0.6081 1

Total calls / total LOC (t-1) 0.1110 -0.2397 0.5571 -0.7124

Profile-corrective(t-1) -0.0324 -0.0049 0.0152 -0.0324

Profile - adaptive (t-1) 0.0243 -0 0566 0.0467 0.0847

Profile - enhancement (t-l) 0.0743 Q.1654 -0.1454 -01843

Profile - new programs (t-l) 0.144! -0.1081 0.0573 -0.0632

Software volatility - periodicity (t-1) -0.2521 -0.1728 0.1207 0.4348

Software volatility-amplitude (t-l) 0.1128 -0.0682 -0.0406 -0.0679

Software volatility-deviation (t-1) 0.0810 -0.1314 -0.0073 -0.1492

Pro- Pro- Pro- Soft- Soft-
file • file - fiie - ware ware

adap- en- new voiatil volatil
tive hance pro- ity - ity -

(t-1) -mem grams period amp-
(t-1) (t-1) icity litudc

(t-l) (t-1)

0.0330

-0.0840

-0.3519

-0.0427

-0.0354

-0.0600

-0.0368

I

-0.0257

-0.3519

■0.0427

-0.0354

-0.0600

-00368

1
-0.2398 1

-0.029! -0.3975 1

0.0071 -0.5351 -0.1078 1

-0.0170 -0.1194 0.2579 -0.1259 1

0.1154 0.0823 -0.0128 0.0363 0.0264

Table 7: Correlations for monthly panel data

Quarterly panel data set Pro­
file-

K batch 8 total Aver- Total Total Total 
transac- online functio age cyclom n2 '  calls /
lions (t) transac- n points prog- a tics /  total total

tions(t) (t-1) ram age total LOC LOC c 0 (r*c
(t-1) LOC (t-1) (t-1) tive

(t-I) (t-1)

# onlinr tnrasne-dons (0  01770 1

Total function points (t-1) 0 2752 0 1508 1

Average program age (t-1) 0 5579 0 0702 0 2169 I

Total cyclomatics / total LOC (t-1) -0  0759 0 0228 -0 2961 -00868 1

Total n2/tn tal LOC (t-1) 0 0044 0 1218 4)2306 0  0745 0 5468 I

Total calls/total LOC (t-1) 0 0717 0 0557 0 2662 0 2382 -0 5803 -0 6168

Profile-conrctive(t-1) -0 1194 4)1248 4)0343 4)1766 00622 00702

Profile-adaptive(t-l) 4)0291 4)0399 4).08I4 41.0811 41.0655 -0.0746

Profile-enhancement (t-l) 0.1689 0.1888 0.0839 0.2448 0.2773 4) 0975

Profile-new programs (t-1) 41.0820 -0.0319 0.1001 4).0691 0.1018 4).0771

Software volatility-periodicity (t-l) -0.2127 -0.1910 -0.2171 -0.2992 0.3553 0.1806

Software volatility-amplitude(t-1) 4).0637 4) 0465 0.0077 4).084I 0.0299 -0.0349

Software volatility-deviation (t-1) 4).2!64 -0.0798 4).0694 4)J0S5 0.1507 -0.0151

Pro- Pro­
file - file - 

adap- en- 
tive honce

Pro- Soft- Soft- 
fiie - wire ware 
new volatil volaiil 
pro- ity - ity -

(t-1) -ment grains period amp- 
(t-1) (t-1) icity litude 

(t-1) (t-l)

I

41.1728 1

0.0585 4) 0153 I

0.1706 -0.5685 -0.2112 1

0.0521 -0.0309 -0.0115 41.4260 I

-0.2665 -0.3945 0.0585 4)6633 0 1020 I

-0.0795 0.2936 -0.0229 -02133 0.1597 0.2465 I

41.0489 -0.0237 0.0840 0.0766 4) 0621 0.1065 0.0148

Table 8: Correlations for quarterly panel data
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Parameter Estimates
Model parameters were estimated with generalized least square regressions for panel data 

sets. Two separate regressions were estimated one using monthly data for predicting software 

processing error rates, and one using quarterly data for predicting lifecycle maintenance costs.

As is common with pooled time-series data sets, autocorrelation was indicated by diagnostic 

tests, i.e. the Breusch-Godfrey test for serial correlation (Johnston, 1984). To correct for this we 

used panel-specific AR1 methods for the correction of serial correlation. This provides separate 

AR1 correction for each group in the panel, i.e. each system in the portfolio. The same 

correction for serial correlation was used in both regression estimates.

Table 9 reports parameter estimates for software processing errors. There is no 

commonly established functional form to describe the relationship between maintenance 

outcomes and characteristics of software evolution and basic characteristics. A linear 

transformation produced a better fit than either a semi-log or log-linear transformation. We 

elaborate on our results in the discussion section.
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Predict: processing error rate
N = 522
Log likelihood = 2196.769 
Wald = 113.13

Estimated
coefficient

p-value • • •  *  p £ 0.001
• •  * p £ 0.05
• *  p £ 0.10

Hypothesis
tested/
supported?

Constant 0.0126385 0.000 • • •
Total function points (t-1) •0.0000005 0.000 **•
Average program age (t-l) -0.0000161 0.002 • • •

Total cyclomatics (t-1) normalized by LOC -0.0761168 0.080 » HI no
Total n2 (t-1) normalized by LOC 0.0042215 0.543 HI
Total calls (t-1) normalized by LOC •0.3143885 0.000 *** HI no
Profile - corrective (t-1) -0.0030525 0.003 H2 ves
Profile - adaptive (t-1) •0.0036036 0.005 ••• H3 yes
Profile • enhancement (t-1) -0.0029690 0.000 • • • H4 no
Profile - new program creation (t-l) -0.0045835 0.000 H5 no
Software volatility - periodicity (t-1) -0.0047772 0.000 ••* H6 yes
Software volatility • amplitude (t-1) 0.0452957 0.000 H7 yes
Software volatility - deviation (t-1) 0.0030350 0.705 H8
Table 9: Prediction of software processing error rate using monthly panel data

Predict: ln(Iifccycle maintenance hours) 
N = 199
Log likelihood = -573.9624 
Wald = 85.91

Estimated
coefficient

p-value • • • * p  £0.001
• •  *  p £ 0.05
* » p £ 0 . 1 0

Hypothesis
tested/
supported?

Constant 25.8279400 0.000 • • •
Usage - transactions, batch (t) 0.0006823 0.153
Usage - transactions, online (t) -0.0000005 0.190
Total function points (t-1) 0.0000143 0.968
Average program age (t-l) 0.0533362 0.421
Total cyclomatics (t-1) normalized by LOC 170.6134000 0.027 • • HI yes
Total n2 (t-1) normalized by LOC •134.3394000 0.000 • • • HI no
Total calls (t-1) normalized by LOC -1016.9020000 0.000 HI no
Profile - corrective (t-1) 2.1484380 0.281 H2
Profile - adaptive (t-1) -0.5163811 0.883 H3
Profile - enhancement (t-1) -1.1262410 0.496 H4
Profile • new program creation (t-1) 0.8682899 0.622 H5
Software volatility - periodicity (t-1) -5.0545150 0.014 • • H6 yes
Software volatility - amplitude (t-1) 6.5823710 0.048 ** H7 yes
Software volatility - deviation (t-1) 0.9321104 0.921 H8
Table 10: Prediction of maintenance costs using quarterly panel data

The results of the regression estimates for maintenance costs are listed in Table 10. A 

test for type of distribution function for maintenance costs showed they were not normally
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distributed.2 A semi-log transformation was used for the cost panel regressions after 

confirmation with the Box-Cox test for data transformation (Greene, 1997; Neter, Waserman and 

Kutner, 1990). Our results support hypotheses H6 and H7, with mixed results for HI.

Inferences drawn from these results will be expanded in the discussion section.

DISCUSSION
The objective of this research is to determine if IS managers can use attributes of an 

information system and its evolutionary record to forecast software maintenance outcomes, i.e. 

maintenance costs and processing errors. By recognizing the progressive function of lifecycle 

maintenance we focus our research on the attributes of an information system to see what we can 

learn from aspects of the system's recent software evolution. We combine our understanding of 

quantifiable characteristics o f software evolution with basic system characteristics to build a 

predictive model for lifecycle maintenance outcomes. This work examines the effect of these 

explanatory variables with separate model regression estimates for software processing errors 

and maintenance costs.

Explanatory variables chosen for our investigation represent information available to IS 

managers charged with responsibility for system lifecycle support. An improved ability to 

predict processing errors and maintenance costs can assist managers with resource planning, staff 

assignments and cost controls. Enhanced predictions of costs and errors can increase an IS 

manager's ability to make repair / replace decisions for information systems.

First, we examine the effect basic system characteristics have on software maintenance 

outcomes. Tests of hypothesis HI indicate we can use some types of system complexity to

2 Maintenance costs are measured as hours o f effort spent on maintenance.
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predict maintenance outcomes. We examine the effects of coordinative, component and 

dynamic complexity as explanatory variables in our predictive model (Table 11).

Explanatory variable Errors Costs
t Coordinative complexity -  normalized cyclomatics 4 t
t Component complexity = normalized n2 Ns 4
t Dynamic complexity = normalized calls 4

T -----“ T
4

Component and dynamic complexities decrease costs and processing errors, while 

coordinative complexity increases costs and processing errors. Systems with higher levels of 

component complexity, i.e. normalized n2 = total n2/total LOC, are data intensive and, thus, 

more stable than systems with lower levels of data intensity (Martin, 1989; Hoffer, George and 

Valacich, 1996). These systems would have lower errors rates, require fewer modifications and 

fixes, and be less expensive to maintain. Increased levels of dynamic complexity, i.e. 

normalized calls = total calls/total LOC, indicate more structured system design with fewer 

software faults and easier maintenance. Our results indicate that processing errors will decrease 

and maintenance costs increase when there is an increase in coordinative complexity, i.e. when 

normalized cyclomatics increases where normalized cyclomatics -  total cyclomatics/total LOC. 

Coordinative complexity places a higher burden on maintenance programmers. Modifications 

take longer to implement and, therefore, result in higher costs. At the same time, it may be that 

the increased time and care devoted to those modifications are completed with fewer errors. 

Thus, we have mixed support for hypothesis HI.

Next we examine the effect software evolution can have on software maintenance 

outcomes. Our model uses two main characteristics of software evolution: lifecycle maintenance 

profiles and software volatility. We use lifecycle maintenance profiles to describe the type of
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activities occurring in software evolutionary processes. We analyze our results for hypotheses 

H2 though H5 in Table 12.

Explanatory variable Errors Costs
t Profile - corrective (t-l) 1 Ns
t Profile - adaptive (t-1) 1 Ns
t Profile • enhancement (t-1) 1 Ns
t Profile - new program creation (t-1) I Ns

Table 12: Effect of lifecycle maintenance profiles on maintenance outcomes
As expected, increases in corrective and adaptive maintenance activities will decrease

future processing errors. Hypothesis H2 and H3 for software processing errors are supported. 

Hypothesis H4 predicts that increasing enhancements will increase both processing errors and 

maintenance costs. Our results indicate that an increase in enhancements at time t-l will result in 

a reduction of processing errors at time /. Hypothesis H5 predicts that an increase in new 

program creations will increase both processing errors and maintenance costs. Our results 

indicate that an increase in new program creations at time t-1 will decrease processing errors at 

time t. Our parameter estimates support hypotheses H2 and H3, and contradict hypotheses H4 

and H5.

Software volatility is described with three dimensions, periodicity, amplitude and 

deviation. Tests of hypotheses H6 through H8 will indicate whether we can use dimensions of 

system volatility to predict lifecycle maintenance outcomes. As shown in Table 13, our results 

provide support for hypotheses H6 and H7..

Explanatory
variable

Errors Costs

t Periodicity 1 i
t Amplitude t t
t Deviation ns Ns

Table 13: Effect of software volatility on maintenance outcomes

3 Empty cells in tables 11-13 indicate estimated parameters were insignificant, i.e. p-value > 10%.
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As expected, decreased periodicity will increase error rates and maintenance costs. 

Decreasing periodicity indicates the software is more volatile, i.e. more software modifications 

are occurring. More software modifications result in a higher likelihood of errors. Increases in 

errors will require software maintenance for program fixes with an increase in maintenance 

costs.

Hypothesis H7 is supported by empirical results for both processing errors and 

maintenance costs. Increasing amplitude, i.e. relative size of software change, will increase the 

rate of occurrence of errors.

Four of eight hypotheses were supported, one had mixed support and two hypotheses

were contradicted. Table 14 summarizes test results for all eight hypotheses.

Hypo­
thesis

Support?

HI Mixed Increased system complexity will increase software processing errors and lifecycle 
maintenance costs.

H2 Yes Increased corrective maintenance profiles decrease software processing errors and lifecycle 
maintenance costs.

H3 Yes Increased adaptive maintenance profiles decrease software processing errors and lifecycle 
maintenance costs.

H4 No Increased enhancement profiles will increase software processing errors and lifecycle 
maintenance costs.

H5 No Increased new program creation profiles will increase software processing errors and 
lifecycle maintenance costs.

H6 Yes Decreased periodicity will increase software processing errors and lifecycle maintenance 
costs.

H7 Yes Increased amplitude will increase software processing errors and lifecycle maintenance 
costs.

H8 Decreased deviation will increase software processing errors and lifecycle maintenance 
costs.

Table 14: Summary of tests of hypotheses

CONCLUDING REMARKS
Change is inevitable. We recognize that to keep pace with changing requirements

information systems must also change and evolve. Slow incremental software transformations
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

can be described by software evolution. Some authors equate software evolution to software 

lifecycle maintenance.

We describe software evolution with software volatility and lifecycle maintenance 

profiles. Lifecycle maintenance profiles describe what type of work is being done. Software 

volatility measures how often modifications are made (periodicity), how much is modified 

(amplitude), and how consistently programs are modified in a system (deviation). We use these 

characteristics with the basic system characteristics of an information system to predict lifecycle 

maintenance outcomes, i.e. maintenance costs and software processing errors.

Implications for research
Post-implementation software maintenance activities account for most of the total

lifetime costs of software systems as they continue to evolve. It is important to understand the 

drivers of these maintenance outcomes and improve a manager's ability to control these costs. If 

software evolution, i.e. software volatility and lifecycle maintenance profiles, affect maintenance 

outcomes, IS managers need to know.

The objective of this research is to determine if software maintenance outcomes, i.e. 

errors and costs, are driven by information system characteristics and descriptors of software 

evolution. We developed a conceptual model based on eight hypotheses describing the 

relationships among software maintenance outcomes and information system characteristics, 

lifecycle maintenance profiles and software volatility.

Our analysis demonstrates that we can use our knowledge of system characteristics and 

recent software evolution, to predict maintenance costs and processing errors

5 - 2 7
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Implications for practice
In discussions of software volatility we often assume that software volatility, i.e. software

change, is bad, should be prevented and that it leads to increased costs. We must be careful not 

to jump to conclusions. Leaving information systems unchanged can actually cause problems if 

they no longer satisfy the information requirements of their organizations. Another challenge for 

IS managers is that information systems generally have a longer tenure than the programming 

team assigned to maintain them. Traditional models explaining software maintenance costs and 

forecasting processing errors use explanatory variables determined during system development 

and implementation. IS managers must deal with the current information system. Choices about 

buying off-the-shelf software, CASE tools and support team staffing may not even be available.

This work provides an IS manager with information about the relationships among the 

current information system, its recent change history and future lifecycle maintenance outcomes, 

i.e. maintenance costs and software processing errors. An understanding of the overall 

evolutionary processes and their relationship with future maintenance costs and processing errors 

can assist managers in forecasting software maintenance budgets and workload. Improvements 

in the prediction of these outcomes will improve managers' abilities to make the repair / replace 

decision when considering replacement of aging information systems with newer technologies.

Contributions
This work extends our knowledge of the relationship between prior lifecycle maintenance 

activities and future maintenance outcomes. Researchers can use this as a motivation for further 

work in describing and analyzing the type, sequence, quantity and timing of maintenance 

activities.
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CONTRIBUTIONS, IMPLICATIONS AND FUTURE WORK

Contributions and Implications
This thesis makes several contributions to our common understanding of software

evolution. This is the first study to measure and analyze differences in evolutionary 

transformations of systems. Empirical studies of software evolution face particular 

challenges due to the longitudinal nature of the evolution phenomenon. The results for 

this study of software evolution are strengthened by use of a unique empirical data set 

ten-times larger than previous longitudinal studies in this area. Prior research on software 

evolution has concentrated on development and confirmation of laws of software 

evolution. This research goes beyond the laws describing universal behavior of software 

systems to build models for analyzing differences in system behavior, i.e. software 

evolution.

This work provides a fresh approach for studying the evolutionary process of

software change. By defining and validating a multi-dimensional measure of software

volatility we can expand available methodologies. Studies of volatility from other

disciplines are compared and contrasted with software change processes. We define

software volatility as a multi-dimensional concept. Software volatility is described by

periodicity (change interval length), amplitude (change size), and deviation (change

interval predictability). Evaluation criteria are developed and rigorously applied to the

newly defined measures of periodicity, amplitude and deviation. Validity of these new

measures is tested empirically using a 20-year history of software modifications for

lifecycle maintenance in 23 information systems. The measures are found to have both

convergent and discriminant validity. Predictive validity is demonstrated with a model

for software complexity. We are able to empirically show that periodicity, amplitude and
6- 1
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deviation are predictors of software complexity. Our empirical tests show that these 

dimensions of software volatility are better predictors than traditional software product 

metrics. Multi-dimensional measures of software volatility, i.e. amplitude, periodicity 

and deviation, are relatively easy to calculate and can be aggregated to vary by system 

and time period. These measures lend themselves to longitudinal studies necessary for 

understanding the evolutionary processes taking place in software lifecycle maintenance.

The second research question addressed in this project is to identify antecedents 

of software volatility. Recognizing the close tie between information systems and their 

working environments, we examine attributes of the competitive environment, the task 

environment, and the basic information system's inner environment to build a conceptual 

model of antecedents for software volatility as measured by periodicity. We build a 

conceptual model based on seven hypotheses. These hypotheses are empirically tested 

using longitudinal data from a 20-year log of lifecycle maintenance activities for 23 

information systems. We find that elements from each facet of an information system's 

environment contribute significantly in determining levels of software volatility.

The third objective addressed in this research is to examine the relationship 

between characteristics of software evolution and lifecycle maintenance outcomes as 

measured by software processing error rates and lifecycle maintenance costs. Lifecycle 

maintenance is motivated by a desire to extend the life of an existing information system. 

To maintain this same progressive focus, we acknowledge that all prior development and 

lifecycle maintenance work has created the currently implemented system. We ask if 

attributes of an information system and its recent software evolution are determinants of 

lifecycle maintenance outcomes. We build a conceptual model based on eight

6 - 2
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hypotheses describing the relationships between maintenance outcomes, i.e. processing 

errors and maintenance costs, and descriptors of recent software evolution and basic 

information system characteristics. This theory is supported with empirical data for a 

two-and-one-half-year history of lifecycle maintenance outcomes and lifecycle 

maintenance activities for a portfolio of 23 information systems. By using three 

dimensions of software volatility, and historical patterns of the types of lifecycle 

maintenance activities recently executed, IS managers can gain significant insight into 

future levels of processing errors and maintenance costs.

This research also makes practical contributions to the work faced by 

practitioners. Combining the results obtained from each of the three research questions, 

we provide IS managers with software volatility measures that can be calculated with a 

basic spreadsheet application. By tracking the motivation of lifecycle maintenance 

activities and the timing and size of software modifications implemented, IS managers 

can gain insight into system behavior. These insights will help in anticipating resource 

requirements for lifecycle maintenance support In addition, the use of current system 

characteristics and recent software evolutionary processes to predict lifecycle 

maintenance outcomes, can expand the tools available for assisting with managerial 

decisions to repair or replace an information system. Contributions of this research 

project are summarized in Table 1.

This research presented a number of challenges that allow it to make substantial 

contributions to the understanding of software volatility and its relationship to the 

evolutionary process of continuous change. First, we defined and measured software 

volatility. Most prior discussions of software volatility have used counts of modifications

6 - 3
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to describe the volatility of programs and systems. We define, evaluate and validate a 

three-dimensional volatility measure to track software evolution during the full lifecycle 

of an information system.

A study of software volatility is also particularly challenging because little theory 

has been developed to guide our investigation. This work is a unique opportunity to use a 

particularly large data set to gain insight into incremental changes occurring in 

information systems as they age. This work began with an inductive approach. We 

adapted measures and concepts from research in other areas. Research from the fields of 

economics, manufacturing processes and software reliability was useful. Once software 

volatility was defined, this new quantitative measure was used to identify factors 

contributing to software volatility. Software volatility as a characteristic of recent 

software evolution was used to model determinants of software maintenance outcomes.

Future Work

The study of software evolution and the management of evolutionary processes 

fall in the intersection of software engineering and project management Analyses in 

these fields must recognize information systems as the economic output of software 

producing organizations. The unique characteristics of software as a product and the 

unique resources required for its creation, present researchers and practitioners with a 

number of interesting problems. Our recognition of the longevity of information systems 

and their constant modification dictates that research in these areas maintain a 

longitudinal perspective. The study of software evolution is the study of change. With 

expanded understanding of change processes, we can deal with questions of how and

6 - 4
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when to prepare for change, what types of systems change the most, and how these 

changes can be dealt with in the most effective and efficient manner. Now that we have a 

more fully descriptive measurement of software volatility, and methods for analyzing 

lifecycle maintenance patterns, we can build our understanding of software evolution and 

its effect on information systems. Both IS researchers and IS practitioners must 

recognize that software changes and evolves as it ages. Software evolutionary processes 

are neither good nor bad, but they are inevitable. With the ability to measure this 

volatility, we can understand what causes change, and anticipate the consequences.

6 - 5
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D efiaiu  a Multi-Dimensional Measure of

Research Ouestion 2:
Antecedents of Software Volatility

Pwftreli-QjintifULli
Characteristics of Software Evolution

Software Volatility and Lifecvcfe Maintenance Outcomes
Topic Multi-dimensional system-level measure of 

software volatility
•  Periodicity (how often?)
•  Amplitude (how big?)
•  Deviation (how well behaved?)

Predictive model: antecedents o f software 
volatility
•  Software characteristics
•  Maintenance profiles (history)
•  Environmental factors

Predictive model: determinants of 
lifecycle maintenance outcomes
•  Basic System Characteristics
•  Software Evolution

•  Maintenance profiles
•  Software volatility

Contribution •  Full picture o f lifecycle volatility - 
system-level measure, multi­
dimensional, direct, objective, measures

•  Measurement provides basis for theory 
and testing

•  Gain perspective on life cycle behavior 
of software systems

•  understanding evolutionary behavior
•  identify and understand driving 

forces o f software volatility
•  help software engineers and 

managers design for change

•  Link between software volatility and 
maintenance errors and costs

•  identify behavioral patterns in 
software lifecycles

•  Improves manager’s ability to predict 
errors and costs

Importance to 
researchers

Direct objective measure, provide foundation 
for new theory

Start to explain differences in lifecycle 
system behavior

•  Identify patterns in system evolution 
and link to lifecycle maintenance 
outcomes

•  Predictive validation o f software 
volatility measures

Importance to MBA 
students

Lifecycle perspective on system management Emphasizes need to design for change Shows link between lifecycle 
maintenance outcomes and software 
volatility

Importance to 
undergraduates

System-level perspective on software 
behavior

Explain differences in software behavior Demonstrate link between lifecycle 
maintenance costs and errors and system 
factors

Importance to 
industry
Table 1: Sum m ary o
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CONFIRMING EVIDENCE FOR LAWS OF SOFTWARE EVOLUTION
Lehman et al. (1997) developed a set of laws describing the evolution of software

systems. Development of these laws occurred over 25 years, and was based on a series of 

empirical studies. Most of these studies used data from relatively short data collection 

periods (less than 3 years) and concentrated on the behavior of software for operating 

systems. In some cases the laws were confirmed by analyzing the same data used to 

formulate the laws (Yuen, 1987). The availability of a longitudinal set of data covering 

23 distinct application systems affords us a unique opportunity to independently confirm 

those laws. Empirical data from the research site (Kemerer and Slaughter, 1997; 1999) 

offer an opportunity to investigate the first seven laws of software evolution.1

Laws of Software Evolution________________________ Description____________________________________
Law of Continuous Change Systems must continually adapt to the environment to

maintain satisfactory performance 
Law of Increasing Entropy (later renamed Law of As systems evolve they become more complex unless
Increasing Complexity) work is specifically done to prevent this breakdown in

structure
Law of statistically smooth growth (also called the Law of The software evolution processes are self-regulating and 
Self Regulation) promote globally smooth growth of an organization’s

software
Law of invariant work rate (also called Law of The organization's average effective global activity rate is
Conservation of Organizational Stability) invariant throughout system’s lifetime
Law of conservation of familiarity Incremental growth rate of a system is constant to

conserve the organization's familiarity with the software. 
Law of continuing growth Functional content of systems must be continually

increased to maintain user satisfaction 
Law of declining quality System quality declines unless it is actively maintained

and adapted to environmental changes 
Law of system feedback Software evolutionary processes must be recognized as

multilevel, multi-loop, multi-agent feedback systems in

Table 1: Laws o f  Software Evolution (Lehman et al., 1997)

1 Law 8: the Law o f System Feedback, cannot be tested with this data. Tests for system feedback require 
pre- and post-test data collection, similar to that planned in the FEAST research projects (Lehman and 
Ramil, 1999).
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Each system can be analyzed individually using the full lifecycle histoiy. 

Portfolio level analyses can be run by using the unbalanced panel data set used to

investigate research question 2.

Laws o f Software Evolution Test Variable Prediction2
Law o f Continuous Change

Law o f Increasing Entropy /  Law o f 
Increasing Complexity 
Law o f Statistically Smooth Growth 
Law o f Invariant Work Rate

Law o f Conservation o f Familiarity 
Law of Continuing Growth 
Law o f Declining Quality

Change events/month
MTSM
Complexity

Change events / programmer-month 
Change in size / month

Change events /  programmer-month 
Change in portfolio size /  month 
Size 
Errors

Change events/month

Positive
Positive
Increasing over time

Constant over time 
Constant over time 
Constant over time

Constant over time 
Increasing over time 
Increasing over time 
Increasing over time

Table 2: Testing the Laws of Software Evolution

2 Predictions will be checked with pair-wise correlations.
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Variables needed to verify Laws o f Software Evolution

Concent Operational variable Definition or name in *.dta file
age portfolio age Months since earliest system implementation
age Avg. system age Mean system age in portfolio
age system age Applage
age Avg. program age Mean program age in a system
age Avg. LOC age Mean LOC age in a system
Change Periodicity NMTSM
Change Amplitude NORMLOC
Change # change events Allchg
Change size LOC added LOC
Change size New programs added Creations
Change size Cyclomatics added Cyclom
Change size Operands added n2
Change size Calls added calls
Complexity System total cyclomatic Totcyclom
Complexity System total n2 Totn2
Complexity System total calls Totcalls
Complexity Normalized cyclomatic Nrmcyclom
Complexity Normalized n2 Nrmn2
Complexity Normalized calls Nrmcalls
System size Total LOC Totloc
System size No. o f programs Modulecount
Capacity unit month 1 month
Capacity unit Programmer-month Programmer-coum * 1 month
Work rate Changes per month Allchg / programmer count = wr 1
Work rate Change size per programmer-month LOC / programmer count = wr2
Work rate Change size per programmer-month Programs /  programmer count = wr3
Work rate Change size per programmer-month Cyclom /  programmer count = wr4
Work rate Change size per programmer-month N2 / programmer count = wrS
Work rate Change size per programmer-month Calls / programmer count = wrt>
Change rate Change size Programs created
Software faults No. Of corrections Sumcorr
Software faults Total changes Allchg

Table 3: Operational Variables
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Law Concept Correlation expected Regression expected Plot needed
1 Change Corr (change,age) > 0 Change = ffage) Change vs. age

2 Complexity Corr (complexity. Age) > 
0

Complexity = f(age) Complexity vs. age

2 Deviation Corr (deviation, age) > 0 Deviation vs. age
3 Change size Corr (change size, age) >

0
T-test (change size =
P eh n *  toe )

Change Size vs. age

4 Work rate = work 
/  capacity unit

Corr (work rate, age) > 0 
T-test (workrate =
IW nk)

Work rate vs. age

5 Change rate = 
Change in 
Portfolio size / 
capacity unit

Corr (change rate, 
portfolio age)
T-test (change rate =
Mctanpiac)

Change rate vs. 
portfolio age

6 System size Corr (size, age) > 0 Size = flage) 
p ^ > o

Size vs. age

7 Software faults Corr (faults, age) > 0 Faults = f(age) 
B ^ > o

Faults vs. age

Table 4: Operational Variables and Expected Relationships

Confirming Evidence
Law I: Law of  continuous chanse

System age Average program age Average LOC age
Periodicity -0.3239 -0.1272 0.1576
Amplitude -0.1530 -0.1609 -0.2275
# change events 0.1495 0.0275 -0.1376
Correlation (change, age)

N Mean Std dev. k-sz 2-tailed p
Periodicity 3201 0.4802 0.4601 16.9010 0.0000
Amplitude 3201 0.0282 0.1203 23.0357 0.0000
# change events 3201 8.9510 10.2678 17.6562 0.0000
Testing for Normal Distribution
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L aw  2 : L aw  o f  Increasing  E n tropy

System ape Average program age Average LOC age
System total cyclomatic 0.2932 0.0990 0.1194
System total n2 0.3526 0.1263 0.1151
System total calls 0.1554 -0.0412 0.0592
Normalized cyclomatic •0.0680 0.0348 0.1333
Normalized n2 -0.0916 -0.0128 0.0802
Normalized calls -0.0738 -0.1902 -0.0807
Correlation (complexity, age)

N Mean Stddev Ic-sz 2-tailed p
System total cyclomatic 3201 9138 11236 11.783 0.0000
System total n2 3201 32132 37361 11.1436 0.0000
System total calls 3201 2116 3628 15.832 0.0000
Normalized cyclomatic 3201 0.0566 0.0229 7.6711 0.0000
Normalized n2 3201 0.2187 0.0608 4.5047 0.0000
Normalized calls 3201 0.0080 0.0055 4.8847 0.0000
Testing for Normal Distribution

Law 3: Law o f Statistically Smooth Growth

System age Average program age Average LOC age
LOC 0.0052 -0.0650 -0.0903
Creations 0.0678 -0.0254 -0.1372
Cyclom 0.0002 -0.0646 -0.0903
N2 0.0166 -0.0631 -0.1075
calls -0.0037 -0.0755 -0.0774
Correlation (change size, age)

t-tests

Ho: LOC = meanioc hypothesis cannot be rejected
Ho: creations = mean^.,,^. hypothesis cannot be rejected
Ho: cyclomatics -  meancyciamaQcs hypothesis cannot be rejected
Ho: n2 = mean^ hypothesis cannot be rejected
Ho: calls = meaiWb hypothesis cannot be rejected
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Law 4: Law o f  Invariant Work Rate

System age Average program age Average LOC age
# changes / programmer months -0.1312 -0.0586 -0.1126
LOC added/ programmer months -0.1251 -0.1158 -0.1428
Programs changes / programmer months -0.0839 -0.0215 -0.0566
Cyclomatics added / programmer months -0 1458 -0.1267 -0.1649
N2 added / programmer months -0.1418 -0.1302 -0.1783
Calls added / programmer months -0.1007 -0.1076 -0.0965
Correlations (work rate, age)

t-tests

Ho: & changes/prograramer-months mean# dungcs/programmer-months 
hypothesis cannot be rejected 

H«: LOC/programmer-months = meanioc/progranuner -months 
hypothesis cannot be rejected 

Ho: programs changed/ programmer-months = meanprogmns changed/ programmer-months 
hypothesis cannot be rejected 

Ho: cyclomatics/ programmer-months = meaDcsclomatics/ programmer-months 
hypothesis cannot be rejected 

Ho: n2/ programmer-months meant,?/ pmgmmm«T-mnnh« 
hypothesis cannot be rejected 

Ho* calls/ programmer-months meancaju/ pmprmmtrr-mnmh-t 
hypothesis cannot be rejected

Law 5: Law o f Conservation o f Familiarity

Svstemage Average program age Average LOC age
# programs created / programmer months -0.1553 -0.1220 -0.2025
LOC added/ programmer months -0.1251 -0 1158 -0.1428
Correlations (change rate / capacity, age)
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L aw  6: L aw  o f  C ontinuing G row th

Correlations (size, age) [same correlation test as Law 3]

N Mean Stddev k-sz 2-tailed p
LOC 3201 2956 13969 23.547 0.0000
Creations 3201 1.0997 3.3372 20.935 0.0000
Cydom 3201 139.834 674.903 23.6454 0.0000
N2 3201 492 2028 22.8564 0.0000
calls 3201 32.748 182.107 24.2515 0.0000
Testing for normal distribution

Law 7: Law o f Declining Quality

System age Average program age Average LOC age
# corrections 0.0750 -0.0089 -0.1337
# modifications 0.1495 0.0275 -0.1376
Correlation (faults, age)

N Mean Stddev k-sz 2-tailed p
# corrections 3201 8.951 18.2678 17.6562 0.0000
# modifications 3201 0.9528 2.3004 20.9571 0.0000
Testing for normal distribution
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APPENDIX:
MAINTENANCE ACTIVITY CLASSIFICATION AND SEQUENCE ANALYSIS 

This is a step-by-step description of the data collection and codification processes

used in this research. The following discussion concentrates on the collection and

codification of maintenance activities and sequence analysis of those activities and

associated levels of software volatility.

Maintenance Activity Classification
Step I: convert source code modification Ion to channe history records

Software change events were extracted from maintenance logs written by system

support programmers each time they updated a system in the portfolio. Logs were kept

for more than 25,000 changes to 3,800 programs in 23 different information systems

from the beginning of the early 1970’s, when many of the systems were originally

written, until the end of the data collection period, June 1993. The information systems

represent more than two-thirds of the functionality accomplished by the full complement

of the Retailer’s systems. The data available in the change logs includes the original

program creation date and author, program function, the maintenance project description,

the programmer making a change, the date of the change, and the description of the

change. In addition, the change logs reference the user project request In many cases, the

changes made to the systems are in response to emergency situations rather than user

requests.

The data codification process captures the source and type of change made. 

Change event history records are dated by modification implementation date. For an 

example of a change log, see Figure 1. Such documentation allows the unit of analysis for
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this research to be the individual change event} of which there were approximately 

25,000 during this period.

PROGRAM-©. <REDACTED>M 110. 
AUTHOR. JOHN <REDACTED>. 
INSTALLATION. <REDACTED>. 
DATE-WRITTEN. FEBRUARY 1990. 
DATE-COMPILED.

XXXM110 ON-LINE RECEIVING ENTRY PROGRAM CHANGE LOG

DATE: 01/02/91
PROGRAMMER: JOHN <REDACTED>
CHANGE: COMPLETELY RESTRUCTURED PROGRAM.
CHANGE: RESET IDOC MRNC-DEDUCT-FLAG, WHENEVER A RECEIPT IS MADE, 

TO A 'N'O VALUE.
CHANGE: REDUCE THE NUMBER OF SKU LINES ON THE SCREEN TO EIGHT 

AND INSTEAD HAVE IDOC COMMENT FIELDS.
CHANGE: BE SURE NEXT PO IS NEVER SET TO AN SAV PO.
CHANGE: UPDATE BTCN SEGMENT FOR EVERY UPDATE TRANSACTION, EVEN 

IF USER DOES NOT ENTER END-OF-RCPT = ’Y’.
CHANGE: ADDED FEATURE THAT LOSS-DAMAGE NUMBER AND DEBIT-MEMO 

NUMBERS ON BTCN SEGMENT WILL NOT BE REPLACED WITH ZEROS 
FROM A CURRENT UPDATE IF THEY HAD CONTAINED NON-ZEROS. 

PROJECT REQUEST #: 403

DATE: 02/26/91
PROGRAMMER: JOHN <REDACTED>
CHANGE: FIX LOOP BUG.
CHANGE: DONT INSERT BMRR SEGMENTS FOR MANIFESTS. 
PROJECT REQUEST #: EMERGENCY FIX

Figure 1: Portion of a Sample Change Log

Change logs were used to codify change events for each program or subprogram 

in the portfolio based on the classification scheme for identifying software maintenance 

activities. A complete breakdown of maintenance activity categories is shown in Table 1. 

This is the lifecycle maintenance activity taxonomy with additional categories delineating

1 Change events include any add, change or delete o f program source code, and implementation of any new
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add, change or deletion of source code for each of the sub-types of activities. Capturing 

data at this detailed level allows for more flexibility in subsequent analyses.

Corrective Enhancement/Perfective
Data Handling (CorrectDat) Data Handling: Add, Change, Delete
Logic/Structure (CorrectLog) (EnhDatAdd, EnhDatChg. EnhDatDel)
Computation (CorrectCom) Logic/Structure. Add, Change, Delete
Initialization (Comcilnit) (EnhLogAdd. EnhLogChg. EnhLogDel)
User Interface PCorrectUserl) Computation: Add, Change. Delete
Module Interlace (CorrectModl) (EnhComAdd, EnhComChg. EnhComDel)
Adaptive Initialization: Add, Change, Delete
Data Handling tAdaplData) (EnhhuAdd, EnhlniChg, EnMniDel)
Logic/Structure (AdaptLogic) User Interface: Add, Change, Delete
Computation (AdaptComp) (EnhUsrIAdd, EnhllsrlChg, EnhUsrIDel)
Initialization (Adaptinit) Module Interface. Add, Change, Delete
User Interface (AdaptUserl) (EnhModlAdd, EnhModlChg, EnhMadlDel)
Module Interface (AdaptModl) New Program (NewProgram)

Table 1: Classification Scheme (Codes in parentheses) 2

To classify each event in the change logs, a content analytic approach was 

adopted using a combination of latent and manifest coding techniques. Manifest coding 

involves looking through the text of the change log for visual occurrences of certain key 

words. Latent coding identifies the underlying meaning in text of the change log when 

key words are not sufficient to categorize events. Both approaches to coding will be 

necessary to account for possible inconsistencies in how the maintenance programmers 

logged their maintenance activities.

Multiple data coders were employed to content analyze the change logs. The 

coders were selected based upon their in-depth knowledge of the information systems 

field so they could identify terms and acronyms, and categorize events accurately. 

Because of the sensitivity of data-dependent research to error, it is important that 

measures be as reliable and valid as possible. Therefore, the data capturing procedures

programs in the system.

2 Adapted from Rombach, Ulery and Vallett (1986)
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employed a number of methodologies designed to maximize interrater reliability and to 

assess and improve coding validity. A coding flowchart was employed to provide a 

consistent way to classify change events. Each coder was instructed in a standard set of 

coding procedures. For consistency, coders referred any change event that could not be 

classified using the flowchart to the principal investigators for resolution. As these cases 

arose, adjustments were made to the coding flowchart. See Figure 2 for the final version 

of the coding flowchart.
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Figure 2: Coding flowchart

To increase intercoder consistency, several trial data coding processes were

performed. In these trials, the primary investigators randomly selected a set of

maintenance events. After each coder independently coded those selected maintenance

events, the Cohen coefficient o f agreement, Cohen’s K, for nominal scales was computed

to assess the relative pair-wise agreement between coders (Emam, 1999). Systematic

differences in coding after each trial were discussed and resolved. The coders

independently classified another set of maintenance events. When sufficient interrater
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reliability has been achieved, the maintenance events for the different information 

systems were divided among the coders. "Coder drift" or exhaustion was investigated by 

analyzing a sample of each coder's work near the end of the coding process and checking 

it against the principal investigator's coding of the same events. Tests for coder drift were 

repeated throughout the data coding process at periodic intervals. As another validity 

check, the principal investigators randomly inspected coded events to see if there were 

any degradations in accuracy. Finally, change logs were compared where possible with 

related data from the Retailer’s maintenance activity tracking system, to ensure that the 

coded change logs are capturing the maintenance activity. All of these measures helped to 

insure the reliability and validity of the change history records.

The change event history records for each system were recorded in a spreadsheet. 

The researcher then had a series of 23 spreadsheets, containing one record for each date 

that each program was modified. If an individual program showed multiple change 

events on the same day, the maintenance activity entries represented the count of 

activities occurring in that program on that day. These spreadsheets will be referred to as 

the system change history file.

Step2 - start with change history records and create sum by date
The system change history file was sorted by year-month of change

implementation, and counts in each category of maintenance activity aggregated by 

month. The resulting spreadsheet was referred to as the sum-by-date file. The range of 

dates covered in the sum-by-date file for each system varied according to the earliest 

program creation date for each system.
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The sum-by-date file for each system was inspected for missing months. Any 

year-months missing were inserted into the sum-by-date file for each system. Counts for 

each maintenance activity category were set to zero on all inserted records.

Step3 - heuristic to identify maintenance activity for the month
Starting with the sum-by-date file for each system, each month was classified

according to the major type of lifecycle maintenance performed that month. The

classifying heuristic identified which maintenance activity type had the maximum

frequency (count) in that month and labeled the year-month record accordingly. The

label categories were new, stable, corrective, adaptive and enhancement. If two

categories had equal frequencies, the phase name was set according to this same ordered

list For each year-month classified enhancement, a subcategory was assigned by a

similar heuristic for six subcategories: logic, data, computation, initialization, user

interface or module interface (Barry, Kemerer, Slaughter, 1999). Again, if there were

equal frequency counts, the subcategory was labeled in this same order. See Figure 3 for

an example using this heuristic for part of one system's activity identification process.
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Figure 3 : labeling year-month by maintenance activity
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Step4 - chronological vector o f maintenance profile
After each record in the system sum-by-date file had been identified by

maintenance activity type, a chronological vector of maintenance activities was extracted.

Each element in the vector represented a month's dominant activity. Separate

chronological vectors of activities were created for each system. The vector

corresponding to the example shown in Figure 3 is displayed in Figure 4.
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Figure 4: chronological vector of maintenance activities
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StepS - phase map for maintenance activities
For each system, the chronological activity vector was input into Winphaser

software to begin a longitudinal sequence analysis of information system behavior. The 

resulting categories of dominant monthly activities were used to create a chronological 

vector of phases for each system. These vectors were then individually analyzed by 

Winphasers software to produce both phase and gamma maps (Pelz, 1985; Kemerer and 

Slaughter, 1997; 1999). Phase mapping techniques analyze nominal data to identify 

sequences of similar categories. These sequences identify similarities in sequences of 

nominal data to show patterns of behavior. Winphaser maps the input vector of nominal 

data elements to a phase map to help analyze and identify patterns in the nominal input 

vector. Winphaser allows the user to vary phase length from one sequence analysis to 

another. By changing the phase length, researchers can simplify resulting sequential 

patterns and improve the confidence level of resulting phase maps. Winphaser identifies 

sequences of like activities with phases of specified phase length. If activities are so 

varied that none of the types are predominant, Winphaser creates a Pending phase. 

Smaller phase lengths create fewer pending phases in the phase mapping.

The input vector shown in Figure 4 was sequentially analyzed by Winphaser to 

produce the phase map shown in Figure 5.

3 Winphaser software is used for sequence analysis o f nominal data. Winphaser was written by Michael 
Holmes at University o f Utah, as adapted from Holmes and Poole, 1991.
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Figure 5: phase map from Figure 4 sample input vector (optional phase length = 3)

Step6  - eamma map for precedence ordering o f maintenance profiles
Winphaser also provided a gamma analysis and precedence mapping to identify

the predominant phase order. Phase length was set to insure an average confidence level

of 50% for the gamma analysis for the input vector of maintenance activities in each

system's history. The same phase length was used for both the activity phase map and

gamma analysis. The heuristic used for setting phase length was to find the smallest

phase length that allowed at least a 50% average confidence in the precedence ordering,

thus creating the fewest pending phases with the required level of confidence in the

identified phase ordering. Phase lengths varied from system to system. Figure 6 shows

the gamma analysis and precedence map established by the input vector in Figure 4.
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WinPhaser Gamma Analysis

SAMPLE-1 09-24-1999 14:14:50 L3 N100 Dl-8 99 (Full Length) 
Phase Frequency 

data 3
logic 26
new 4
Pending 44
stable 22

Precedence Counts

data logic new Pending stable

data 0 57 12 132 66
logic 21 0 84 787 572
new 0 20 0 108 88
Pending 0 357 68 0 968
stable 0 0 0 0 0
Pairwise Gamma Scores

data logic new Pending stable
data .000 .462 1.000 1.000 1.000
logic -.462 .000 .615 .376 1.000
new -1.000 -.615 .000 .227 1.000
Pending -1.000 -.376 - .227 .000 1.000
stable -1.000 -1.000 -1.000 -1.000 .000
Separation Scores

data logic new Pending stable
0.865 0.613 0.711 0.651 1.000

Precedence Scores

data logic new Pending stable
-0.865 -0.382 0.097 0.151 1.000

Phase Diagram

stable*** Pending** new** logic** data***

* .25 < separation < .50
** .50 < separation < .75
*** .75 < separation

Figure 6: gamma analysis and precedence map
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Software Volatility Analysis:
Stepl - sort change history records

The change history file for each information system was sorted: primary sort

system name, secondary sort change date.

Step2 - calculate time since previous software modification
The sorted change history records were expanded to include a calculated field for

time since previous software modification. The elapsed time since the prior change

record for that program is calculated.

Step3 - re-sort change history records
The resulting expanded change history file was sorted by year-month.

Step4 -calculate MTSM and change dispersion
Change history records were aggregated by the time unit of analysis.4 In most

cases the unit of analysis is monthly and the records were aggregated by year-month of

change implementation. The Mean of Time since Software Modification, MTSM, was

calculated for each year-month, and the variance for each MTSM was recorded as the

change dispersion for the same year-month.

StepS - set periodicity, amplitude and deviation hieh low indicators
For each information system, the lifetime mean periodicity, amplitude and

deviation were calculated. High/low indicators5 for each dimension are set for each

month.

4 This discussion relies on measures aggregated by month. Software volatility measures to investigate 
research question 3 on maintenance costs calculate software volatility on a quarterly basis.

5 Periodicity indicators are set for long/short to indicate time intervals longer or shorter than average.
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Step6  - identify volatility classification for each month as follows:

Two coding schemes for nominal classification of software volatility are used. 

The first scheme classifies volatility by examining characteristics of the periodicity 

(timing) and deviation (predictability) of software modifications. The second scheme 

uses all three dimensions of software volatility. Scheme 2 classified systems behavior by

amplitude/periodicity/deviation.

Classification Periodicity level Deviation level
A Short Low
B Short High
C Long Low
D Long High
Volatility Classification Scheme 1: Periodicity/Deviation

Classifica­
tion

Amplitude Periodicity Deviation Description

I Low Long Low Least volatile: occasional small 
modifications occurring in a well- 
behaved pattern

n Low Long High Occasional small modifications with 
wide variance o f behavior among system 
programs

III Low Short Low Constant small modifications occurring 
in a well-behaved pattern

IV Low Short High Constant small modifications with wide 
variance o f behavior among system 
programs

V High Long Low Occasional large modifications 
occurring in a well-behaved pattern

VI High Long High Occasional large modifications with 
wide variance o f behavior among system 
programs

vn High Short Low Constant large modifications occurring 
in a well-behaved pattern

vm High Short High Most volatile: constant large 
modifications with wide variance o f 
behavior among system programs

Volatility Classification Scheme 2: amplitude/.periodicity/deviation

Table 2: High/low indicators and volatility classifications
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S tep7  -  chronological vector of  vo la tility  classifications
As with the chronological vector of activity phases, a similar vector of volatility

classifications is created for each information system. After the appropriate classification

scheme is selected, a chronological vector is created for the life span of the information

system. This vector is used as an input file for Winphaser mapping and gamma analysis.

Step8 - phase map of  volatility classifications
Winphaser sequence analysis was run for the chronological vector of volatility

classifications associated with each system.

Step9 - gamma mao for precedence orderinz o f volatility classifications
This same sample data was used as input for gamma analysis and precedence

ordering produced by Winphaser. The 4-IeveI classification of volatility was used as a

basis for the sample gamma analysis in Figure 7.
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Figure 7: Sample Gamma analysis and precedence ordering

The example gamma analysis in Figure 7 identified 77 software volatility A 

phases, 17 software volatility B phases and 152 software volatility C phases. The 

precedence ordering reports that most of the time the system's volatility travels from type 

C to type A to type B.

Step 10 - radial graphs o f stability Quadrants
To show ordering and relative magnitude of volatility classifications the

precedence ordering and volatility phase frequency reported from the gamma analysis

were normalized and displayed in the form of a radial graph. First, the classifications

were ordered by severity and degree of volatility from a software manager's planning
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perspective. The ordering listed in Table 3 was based on Classification scheme 1 using 

periodicity/deviation.

Volatility classification Order
C 5
D 4
Pending 3
A 2
B 1
Table 3: Volatility Classification Ordering

The length of each phase was normalized as the proportion of that type relative to 

all types identified by the gamma analysis. For the sample in Figure 7, the normalization 

is as follows:

A: 77(77-17-152) = 0.30 

B: 17 (77-17-152) = 0.07 

C: 152 (77-17-152) = 0.63 

The resulting radial graph is displayed in Figure 8.

Radial graphs were created for each information system to allow visual 

comparison of the changes in volatility over system life spans. A set of graphs was 

created for each classification scheme. They are displayed in the next two appendices.
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Figure 8: Radial graph of volatility gamma analysis
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APPENDIX C: 

RADIAL GRAPH REPRESENTATIONS OF GAMMA ANALYSES

Using Periodicity Deviation Classification o f Software Volatility
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APPENDIX D: 

RADIAL GRAPH REPRESENTATIONS OF GAMMA ANALYSES

Using Periodicity Amplitude Deviation Classification o f Software Volatility
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