INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UM! films
the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SOFTWARE EVOLUTION,
VOLATILITY
AND
LIFECYCLE MAINTENANCE PATTERNS:
A LONGITUDINAL ANALYSIS

Evelyn J. Barry
Carnegie Mellon University

Graduate School of Industrial Administration

A Thesis

April 30, 2001

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 3040431

Copyright 2002 by
Barry, Evelyn Jean

All rights reserved.

o

UMI

UMI Microform 3040431

Copyright 2002 by ProQuest Information and Leaming Company.

All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest Information and Learming Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, M| 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CARNEGIE MELLON UNIVERSITY

GRADUATE SCHOOL OF INDUSTRIAL
ADMINISTRATION

DISSERTATION

Submitted in partial fulfililment of the requirements

for the degree of DOCTOR OF PHILOSOPHY

INDUSTRIAL ADMINISTRATION (INFORMATION SYSTEMS)

Title_ ""SOFTWARE EVOLUTION, VOLATILITY AND LIFECYCLE MAINTENANCE
PATTERNS: A LONGITUDINAL ANALYSIS"

Presented by EVELYN J. BARRY

Accepted oy —

T
Co-ChaiTfs: Pxofpssor Sghdra Slaughter Date
Professor Chris Kesmerer (A ‘

Approved by the/ ,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

Table of Contents
List of Figures
List of Tables
Acknowledgements
Abstract
Chapter 1: Introduction
Chapter 2: Literature Review: Software Evolution
Chapter 3:
Research Question 1-
A Multi-Dimensional Measurement of Software Volatility
Chapter 4:
Research Question 2-
Antecedents of Software Volatility
Chapter §:
Research Question 3:
Characteristics of Software Evolution and Lifecycle Maintenance
Outcomes
Chapter 6: Conclusion
Appendices:
Appendix A:
Confirming Evidence for the Laws of Software Evolution

Appendix B:
Data Codification and Sequence Analysis Methodology

Appendix C:
Radial Graph Representations of Gamma Analyses
Using periodicity/deviation classification of software volatility

Appendix D:

Radial Graph Representations of Gamma Analyses
Using periodicity/amplitude/deviation classification of software
volatility

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

B-1

C-1

D-1

LIST OF FIGURES

Table =

1
2

AW bW -

7a

8a
8b
8c

N ~—

O~ W H W —

Title

Chapter |

Software Evolution and Lifecycle Maintenance
Overview of Three Research Questions

Chapter 2
Embedded Systems

Chapter 3

Evolution of System A

Evolution of System A - Month 1
Evolution of System A - Month 2
Evolution of System A - Month 3

System A Lifecycle Software Volatility
Hypothetical Idealized Stable System
Lifetime Volatility System 7 - Periodicity
Lifetime Volatility System 7 - Amplitude
Lifetime Volatility System 7 - Deviation
Lifetime Volatility System 23 - Periodicity
Lifetime Volatility System 23 - Amplitude
Lifetime Volatility System 23 - Deviation

Chapter 4
Antecedent of Software Volatility
Predictive Model for Periodicity

Chapter 5
Model of Predictors of Maintenance Outcomes

Appendix B

Portion of a Sample Change Log

Coding Flowchart

Labeling Year-Month by Maintenance Activity

Chronological Vector of Maintenance Activities
Phase Map From Figure 4 Sample Input Vector
Gamma Analysis and Precedence Map

Sample Gamma Analysis and Precedence Ordering

Radial Graph of Volatility Gamma Analysis

page

39

3-10
3-11
3-12
3-13
3-32
3-33
3-33
3-34
3-35
3-35
3-36

4-8
4-19

B-2

B4, B-5
B-8
B-10
B-12
B-13
B-17
B-19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES

Table = Title Puge
Chapter 2
1 Review of Software Evolution Research 2.2

Descriptive / Analytical Research on the Nature of Software Evolutionand 2-3
Lifecycle Maintenance

3 Laws of Software Evolution 24
4 Empirical Studies on Software Evolution 24
Chapter 3
1 Mathematical Properties of Proposed Measures 3-9
2 Evaluation of Proposed Measures 3-18
3 Correlations of NAmplitude and % of New Programs 3-25
4 Correlations of NPeriodicity and No. of Modifications 3-29
5 Correlations of NDeviation and the Coefficient of Variation 3-27
6 Correlations Supporting Discriminant Validity 3-28
7 Summary of Linear Regression Estimates for the Software Portfolio 3-30
Chapter 4
1 Antecedents of Software Volatility 4-24
2 Descriptive Statistics of Operational Variables 4-25
3 Correlations of Operational Variables 4-26
4 Regression Estimates for Drivers of Periodicity 4-27
5 Hypotheses Test Results 4-28
Chapter 5
I Hypotheses to be Tested 5-13
2 Operational Explanatory Variables 5-17
3 Summary Statistics of Monthly Panel Data Set 5-18
4 Frequency Counts of Binary Variables - Monthly Panel 5-19
5 Summary Statistics of Quarterly Panel Data Set 5-19
6 Frequency Counts of Binary Variables - Quarterly Panel 5-19
7 Correlations for Monthly Panel Data Set 5-20
8 Correlations for Quarterly Panel Data Set 5-21
9 Prediction of Software Processing Error Rate Using Monthly Panel Data 5-22
10 Prediction of Maintenance Costs Using Quarterly Panel Data 5-23
11 Effect of System Complexity on Maintenance Qutcomes 5-24
12 Effect of Lifecycle Maintenance Profiles on Maintenance Qutcomes 5-25
13 Effect of Software Volatility on Maintenance Outcomes 5-26
14 Summary of Tests of Hypotheses 5-26
Chapter 6
1 Summary of Contributions 6-6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES (cont'd)

Table =

aw 1
Law 2
Law3
Law 4
Law5

Law 6
Law 7

L) N -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Title

Appendix A

Laws of Software Evolution

Testing the Laws of Software Evolution
Operational Variabies

Operational Vanables and Expected Relationships
Correlation (change, age)

Testing for Normal Distribution

Correlation (complexity, age)

Testing for Normal Distribution

Correlation (change size, age)

t-tests

Correlation (work rate, age)

t-tests

Correlation (change rate/capacity, age)

Testing for Normal Distribution of Change Size
Correlation (faults, age)

Testing for Normal Distribution

Appendix B

Classification Scheme

High/Low Indicators and Volatility Classifications
Volatility Classification Ordering

Page

A-1
A2
A-3
A4
A4
A4
A-S
A-S
A-5
A-5
A-6
A-6
A-6
A-7
A-7
A-7

B-3
B-15
B-16

This work is dedicated to my family for their encouragement and support of my
efforts and for their patience during completion of my thesis. [want to thank my
advisors, Dr. Slaughter and Dr. Kemerer, for their patience and determined efforts to
keep me focused on achieving my best. [want to thank the faculty and graduate students
who participate in GSIA's IS doctoral seminars for their friendly questions, constructive
criticisms and enthusiastic encouragement.

This research was supported in part by the William J. Larimer Fellowship at the
Graduate School of Industrial Administration, by faculty development grants from
Carnegie Mellon University, by National Science Foundation grants CCR-9988227 and
CCR-9988315, by a Research Proposal Award from the Center for Computational
Analysis of Social and Organizational Systems, NSF IGERT, and by the University of

Pittsburgh Katz Graduate School of Business Institute for Industrial Competitiveness.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This thesis is dedicated to my father, who knew [could do it all along.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SOFTWARE EVOLUTION, VOLATILITY AND LIFECYCLE MAINTENANCE
PATTERNS:
A LONGITUDINAL ANALYSIS

Thesis Abstract
Evelyn Barry
April 2001

Change is a constant in our world and information systems are no exception.
Y2K required massive software modifications and the need for change continues in the
application systems for the World Wide Web. Information systems often remain
productive for many years, yet change so dramatically that current system characteristics
no longer resemble their original implementation.

Software evolution is described as the dynamic behavior, growth and incremental
change of information systems throughout their productive lives. Even though software
maintenance represents 80% of the lifetime cost of an information system, the IS
community has little scientific knowledge explaining how information systems evolve
and the consequences of different evolutionary patterns. This work expands our
understanding of software evolution by providing quantitative measurement and analysis
of software evolution, examining its causes and its consequences.

Software evolution is characterized by software volatility and lifecycle
maintenance profiles. These traits are used to address three research questions: (1) how
can software volatility be conceptualized and measured? (2) what are the antecedents of
software volatility? and (3) are software volatility and lifecycle maintenance profiles
determinants of lifecycle maintenance outcomes?

Formal criteria are applied to rigorously define, evaluate and validate three
measures of software volatility: amplitude, periodicity and deviation. Empirical data
demonstrate the contingent, discriminant and predictive validity of these measures.

Conceptual models for the second and third questions are developed and
empirically tested to analyze the relationships of software evolution to information
systems and their lifecycle maintenance processes. Hypotheses are tested by panel
regressions based on empirical data from a detailed 20-year maintenance log of software
modifications in a portfolio of 23 information systems.

This thesis makes several contributions. A rigorous set of evaluation criteria for
software measurement is developed and applied. These analyses describe the
relationships connecting amplitude, periodicity and deviation with lifecycle maintenance
patterns, and lifecycle maintenance outcomes of processing errors and maintenance costs.
These results are strengthened by use of a8 unique empirical data set ten-times larger than
previous longitudinal studies of software evolution. These new insights into software
evolutionary processes can be used to advantage by IS researchers and managers.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

INTRODUCTION
As we begin the 21 century there is a renewed interest in long-term perspectives

for many of the management practices currently in use. We have now had electronic
computers for over half a century, and with them, the added responsibility of software
management. Many people were dumbfounded by the possibility of a Y2K problem.
With the rapidity of changes in information technology, how could we still be dealing
with software written in some cases more than 20 years ago?

What IS professionals have long realized, and what many others are now
beginning to understand, is that many information systems remain productive for
decades. It is estimated that the average enterprise general ledger application system in
Fortune 1000 companies is 15 years old (Kalakota and Whinston, 1996, p. 390). The
Y2K problem highlighted the continual investment required of organizations to maintain
their systems.

With the recognition that information systems are long-lived comes the necessity
to understand longitudinal changes occurring in those systems. [nformation systems
must continue to operate efficiently and effectively in dynamic competitive
environments. To perform at satisfactory levels, software systems must periodically be
adjusted to model changes occurring around them. Software changes may reveal errors
of omission or miscommunication, or be the result of requirements for additional
functionality. Whether these changes are done to correct flaws in existing code, adapt to
the environment, or add functionality, they are generally classified as lifecycle software
maintenance.

Software maintenance activities span a system's productive life and can consume

as much as 80% of the total effort expended on a system during its lifetime (Bennett,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1996). While researchers recognize the importance of lifeycle maintenance activities and
their outcomes, relatively little empirical research has been conducted that examines the
type and extent of changes taking place.

The longitudinal perspective required for analysis of lifecycle maintenance leads
us to the process of software evolution. Belady and Lehman (1976) define software
evolution as “ ... the dynamic behavior of programming systems as they are maintained
and enhanced over their life times.” Software evolution is of increasing importance as
systems in organizations become longer-lived. We refer to those changes as lifecycle

maintenance.

@w‘ """ * ---

Figure 1: Software Evolution and Lifecycle Maintenance

We observe that lifecycle maintenance activities are the driving force in the
longitudinal transformations occurring within an information system. Not every
information system displays the same evolutionary changes in behavior. What accounts
for these differences? How do these differences affect lifecycle maintenance outcomes
such as processing errors and maintenance costs? Do differences in information system
behavior affect maintenance outcomes?

The evolutionary process of software change can be described by analyzing
software volatility, i.e. the amount and intensity of software change. Some software

systems are constantly undergoing major modifications and others remain untouched for

-2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

months and years at a time. By developing a measure of software volatility and
identifying its antecedents, we can expand our understanding of software evolution. We
use our measures of software volatility and historical patterns of lifecycle maintenance
activities to describe software evolution. We then investigate the relationship between
software evolution and software maintenance outcomes. We combine our measures of
software volatility with a detailed taxonomy of lifecycle maintenance activities to
describe software evolution. We investigate these factors to see what effect they have on
outcomes such as processing errors and maintenance costs. This research project
addresses three research questions by using a software evolutionary perspective to study
longitudinal transformations that information systems undergo during their lifetimes.

1. How can software volatility be conceptualized and measured?

2. What are the antecedents of software volatility?

3. Using software volatility and lifecycle maintenance profiles as descriptors of
software evolution, are the characteristics of software evolution determinants
of lifecycle maintenance outcomes?

These research questions now become pieces of a puzzle. As shown in Figure 2,
each research objective is one step toward painting a complete picture of the roles
lifecycle maintenance activities and software volatiiity play in the evolutionary
transformations that occur during the productive lives of information systems.

The next chapter presents a discussion of software evolution with a brief review
of relevant literature. The research questions are presented and empirically tested in each
of the following three chapters. The results of this research are then summarized in

Chapter 6. Additional empirical results and a detailed description of data conversion

processes are included in the appendix.

1-3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2: Overview of Three Research Questions

REFERENCES
Belady, L.A., and Lehman, M.M., "A Model of Large Program Development”, IBM
Systems Journal, 1976, No. 3, pp. 225-252.

Bennet, Keith, "Software Evolution: Past, Present and Future", Information and Software
Technology, Nov. 1996, Vol. 39, No. 11, pp. 673-380.

Kalakota, R., and Whinston, A.B., Electronic Commerce: A Manager's Guide, Addison-
Wesley, Reading, MA, 1996.

1-4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 2:

LITERATURE REVIEW - SOFTWARE EVOLUTION

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PRIOR RESEARCH ON SOFTWARE EVOLUTION
As with discussions of the evolution of biological entities, analyses of software

evolutionary processes must account for both the inherent characteristics of software
systems, and the effects of environmental influences on them. Software changes occur
for a variety of reasons. Some of these are in response to environmental changes and
some are the result of a natural growth in user expectations and functional demands
placed on the application.

Prior studies of software evolution assume information systems are open systcms,
embedded in their respective organizations. Because they are open systems exchanging
information with their environment, information systems are open systems, growing and
changing during their productie lives in response to their environment. (Scott, 1992;
Morgan, 1997). A shown in Figure | embedded systems are influenced and changed by
their environment, and in turn they influence and change their environment (Lehman and
Belady, 1985, Pfleeger, 1998).

Researchers have analyzed software evolution for over three decades. (See
Tables 1 and 2) Based on a series of empirical and analytical studies, researchers,
Lehman et al., have developed eight laws of software evolution for embedded systems.
(Lehman and Belady, 1985, , et al., 1997). (See Table 3) Prior to work by Kemerer and
Slaughter (1997, 1999) none of these empirical studies examined data covering more than
four years of software evolution. (See Table 4.)

Current research on software evolution is headed in a number of different
directions. As reported in a recent Workshop on Empirical Studies of Software

Development and Evolution, software evolution is providing a theoretical foundation for

(8]
+
v—

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

analysis of reverse engineering technologies and new perspectives on cost estimation
tools. In addition further work is being done on the FEAST/2 (Feedback Evolution and
Software Technology) project, further investigating Lehman's eighth law of software

evolution, the Law of System Feedback (Harrison, et al., 1999).

feedback
o
environment software system
feedback
Embedded Software System
Figure 1: Embedded Systems
Author year Title
Bennet 1996 Software Evolution: Past, Present and Future
Schneidewind 1987 The State of Software Evolution
Kemerer 1995 Software Complexity and Software Maintenance:

A survey of empirical research

Kemerer & Slaughter 1997 Methodologies for Performing Empirical Studies:
Report from the International Workshop on
Empirical Studies of Software Maintenence

Cote, Bourque, 1988 Software Metrics: An Overview of Recent Results
Oligny & Rivard
Belady 1979 On Software Complexity

Table 1: Reviews of Software Evolution Research

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Author Year Title Dependent Independent Conclusion
variable(s) variable(s)
Lehman 1998 Software's Future: Managing Discussion
Evolution
Lehman 1996 Feedback in the Software Feedback learning system type, benefits from innovative changes to forward path methods
Evolution Process system, success of software process limited by feedback occurring in software process
forward path
innovations
Brooks 1995 Mythical Man Month general software process management techniques
Perry 1994 Dimensions of Software discusses 3 dimensions: domain (real world and its
Evolution abstractions), experience (from feedback,experimenta-tion),
process (methods, technologies, organizations)
Yau, 1988 An Integrated Life-Cycle Model describes software maintenance in 4 phases and concentrates on
Nicholl, for Software Maintenance interphase relationships; describes software in terms of control
Tsai, & flow, data flow and data structure; permits analysis of basic
Liu properties of software system throughout life-cycle
Lehman 1984 Program Evolution software process can be studied in its environment - also
detailed discussion of SPE classification of systems; discussion
of step paradigm for software process
Lehman 1980 On Understanding Laws, explain and support S laws of software evolution
Evolution and Conservation in the
Lasge-Program Life Cycle
Wood- 1980 A Mathematical Model for the size &complexity structural work develop mathematical models expressing the laws of software
side Evolution of Software of software, effort, non- evolution, gives laws internal validity
effictency of structural work
software process effort, release no.,
modules produced
Belady 1978 Staffing Problems in Large Scale discussion of the type and sequence of work done in software
Programming development, and the iterative nature of the process
Lehman 1977 Human Thought and Action as an

Ingredient of System Behavior

top-down analysis of the software process; discussion relies on
systems science

Table 2: Descriptive / Analytical Research on the Nature of Software Evolution and Lifecycle Maintenance

58]
v
-l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduc

Laws of Software Evolution

Description

Law of Continuous Change

Law of Increasing Entropy (later renamed Law of
Increasing Complexity)

Law of statistically smooth growth (also called the
Law of Self Regulation)

Law of invariant work rate (also called Law of
Conservation of Organizational Stability)

Law of conservation of familiarity

Law of continuing growth

Law of declining quality

Law of system feedback

Systems must continually adapt to the environment
to maintain satisfactory performance

As systems evolve they become more complex
unless work is specifically done to prevent this
breakdown in structure

The software evolution processes are self-regulating
and promote globally smooth growth of an
organization’s software

The organization’s average effective global activity
rate is invariamt throughout system’s lifetime
Incremental growth rate of a system is constant to
conserve the organization’s familiarity with the
software.

Functional content of systems must be continually
increased to maintain user satisfaction

System quality declines unless it is actively
maintained and adapted to environmental changes
Software evolutionary processes must be recognized
as muiti-level, multi-loop, multi-agent feedback
svstems in order to achieve system improvement.

Table 3: Laws of Software Evolution (Lehman, et al., 1997)

Author Year Title Data
Kemerer and Slaughter 1999 An Empirical Approach to 20 years of software modifications
Studying Software Evolution for 23 software systems
Kemerer and Slaughter 1997 Determinants of Software 5488 modifications in 621
Maintenance Profiles: An software modules in five
Empirical Investigation application systems;
approximately 9 years of software
changes
Lehman, et al. 1997 Metrics and Laws of Software 21 releases of a financial software
Evolution: The Nineties View package
Basili, et al. 1996 Understanding and Predicting the 25 releases of 10 different software
Process of Software Maintenance systems
Releases
Gefen and Schneberger 1996 The Non-Homogeneous 29 months of software problem
Maintenance Periods: A Case reports
Study of Software Modifications
Cook and Roesch 1994 Real-Time Software Metrics 10 versions of real-time German
switching software released over
18 months
Yuen 1987 A Statistical Rationale for Modules from OS 360, OMEGA,
Evolution Dynamics Concepts Executive, BD, B, DOS, CCSS
systems
Yuen 1985 An Empirical Approach to the 19 months of data for 5000
Study of Errors in Large ‘component’, 3000 KLOC
Software Under Maintenance
Belady and Lehman 1976 A Model of Large Program 21 user-oriented releases
Development

Table 4: Empirical Studies of Software Evolution

(8]

ed with permission of the copyright owner. Further reproduction prohibited without permission.

REFERENCES

Basili, V., Briand, L., Condon, S., Kim, YM_, Melo, W_, and Valett, J., "Understanding
and Predicting the Process of Software Maintenance Releases”, 18" International
Conference on Software Engineening, 1996, Berlin, Germany.

Belady, L.A., "Evolved Software for the 80's”, Computer, Vol. 12, No. 2, Feb. 1979, pp.
79-82.

Bennet, K., "Software evolution: past, present and future”, Information and Software
Technology, Vol. 39, No. 11, Nov. 1996, pp. 673-680

Brooks, F.J., The Mythical Man-Month, Addison-Wesley Publishing Co., 1995.

Cook, C.R. and Roesch, A., "Read-Time Software Metrics", Journal of Systems and
Software, Mar. 1994, Vol. 24, No. 3, pp. 223-237.

Cote, V., Bourque, P., Oligny, S., Rivard, N., “Software Metrics: An Overview of Recent
Results”, The Journal of Systems and Software, Vol. 8, No. 2, March 1988, pp.
121-131.

Gefen, D., and Schneberger, S.L., "The Non-Homogeneous Maintenance Periods: A Case
Study of Software Modifications”, Proceedings of the [EEE Conference on
Software Maintenance, 1996, Monterey, CA.

Hamison, R., Badoo, N. Barry, E., Biffl, S., Parra, A, Winter, B., and Wuest, J.,
"Workshop and Conference Reports: ESSDE'99 Working Group Report on
Directions and Methodologies for Empirical Software Engineering Research”,
Empirical Software Engineering, December 1999, Vol. 4, No. 4, pp. 405-410.

Kemerer, C.F., "Software Complexity and Software Maintenance: A Survey of Empirical
Research”, Annals of Software Engineering, Vol. 1, Sept. 1995, pp. 1-22.

Kemerer, C.F. and Slaughter, S.A., "Determinants of Software Maintenance Profiles: An
Empirical Investigation”, Journal of Software Maintenance, Vol. 9, 1997, pp. 235-
251.

Kemerer, C.F. and Slaughter, S.A., 1999, "An Empirical Approach to Studying Software

Evolution”, [EEE Transactions on Software Engineering, Vol. 25, No. 4, pp. 493-
509.

Lehman, M.M., " Human Thought and Action as an Ingredient of System Behavior",

Encylcopedia of Ignorance, R. Duncan and M. W. Smith (Eds), Pergamon Press,
Oxford, 1977.

Lehman, M.M., "On Understanding Laws, Evolution and Conservation in the Large
Program Life Cycle", Journal of Systems and Software, Vol. 1, No. 3, 1980, pp.

213-221.
Lehman, M.M., "Program Evolution”, Information Processing and Management, Vol. 20,
1984, pp. 19-36

Lehman, M.M., and Belady, L.A., Program Evolution: Processes of Software Change,
Academic Press, London, 1985.

Lehman, M.M., "Feedback in the Software Evolution Process", Information and Software
Technology, Vol. 39, No. 11, Nov. 1996, pp. 681-686.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lehman, M.M_, Ramil, J.F., Wemick, P.D., Perry, D.E. and Turski, W.M., "Metrics and
Laws of Software Evolution - The Nineties View", Metrics '97, the Fourth
International Software Metrics Symposium, 1997, Albequerque, NM

Lehman, M.M., "Software's Future: Managing Evolution”, [EEE Software, January-
February, 1998, pp. 40-44.

Morgan, G., Images of Organization, Sage Publications, Thousand Oaks, CA, 1997.
Perry, D.E., "Dimensions of Software Evolution”, [EEE Conference on Software
Maintenance, 1994, [EEE.

Pfleeger, S., "The Nature of System Change", IEEE Software, Vol. 15, No. 3, May-June
1998, pp. 87-90.

Schneidewind, N.F., "The State of Software Evolution”, [EEE Transactions on Software
Engineening, Vol. 13, No. 3, March 1987, pp. 103-110.

Scott, R.W., Organizations: Rational, Natural, and Open Systems 3" Edition, Prentice
Hall, Englewood Cliffs, NJ, 1992.

Woodside, C.M., "A Mathematical Model for the Evolution of software”, Joumnal of
Svstems and Software, Vol. 1, No. 4, 1980.

Yau, S.S., Nicholl, R.A,, Tsai, J., Liy, S., "An Integrated Life-Cycle Model for Software
Maintenance”, IEEE Transactions on Software Engineering, Vol. 14, No. 8, Aug.
1988, pp. 1128-1144.

Yuen, C.H., "An Empirical Approach to the Study of Errors in Large Software Under
Maintenance”, 2™ [EEE Conference on Software Maintenance 1985,
Washington, D.C.

Yuen, C.H.,, "A Statistical Rationale for Evolution Dynamics Concepts”, Proceedings of
the Conference on Software Maintenance, 1987, Austin, TX.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3:
RESEARCH QUESTION 1 -

A MULTIDIMENSIONAL MEASUREMENT OF SOFTWARE VOLATILITY

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 INTRODUCTION
Everyone has heard the adage "The only thing constant is change”. It is no

surprise, therefore, that change is also a constant in software systems. This is probably
more true of software systems than other phenomenon due to their often perceived ease
of change. In the software engineering community we dealt with change while working
on software modifications for Y2K, and we continue to deal with rapid changes while
supporting software for the World Wide Web. Not all software systems' change in the
same way or at the same rate. Some software systems are constantly undergoing major
modifications, while others remain untouched for months and years at a time. What
accounts for these differences and how can they be analyzed? Identification and
understanding of these differences in system evolution can lead to improved abilities to

engineer and manage software systems.

Exact definitions and measurement of research variables are essential before more
in-depth analysis can be conducted. As defined by Belady and Lehman, software
evolution is "the dynamic behavior of programming systems as they are maintained and
enhanced over their life times" (Belady and Lehman, 1976). Some researchers have
expanded this definition to concentrate on lifecycle maintenance processes, using
"evolution” as a synonym for "maintenance” or "modification” (Van Horn, 1980). This
view changes the research emphasis to examine processes people use to develop software
systems and to follow systems as they progress through iterative releases (Lehman and
Ramil, 1999).

In this study, we draw upon Belady and Lehman's original definition of software
evolution. In doing so, we re-emphasize the general systems approach to understanding

'lnthisdismssionsysremrcfmtoagoupofrelaedpmmmormo&ulathatﬁmﬁomognbenowardacomon
purpose. We refer to programs as clements of a software system. A program is a set of ordered computer commands
assembled to accomplish a specific task.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the nature of software systems. As in Kemerer and Slaughter (Kemerer and Slaughter,
1999), this work examines post-implemcntation system behavior. For over two decades
Lehman er a/. (Belady and Lehman, 1976; Lehman and Belady, 1985) have postulated
and tested a series of laws of software evolution describing proposed universal aspects of
software system behavior. These laws describe software behavior as dynamic
characteristics of change, entropy, growth and quality. The Law of Continuous Change
was among the first of these laws to be formally stated and is based on experiences of
practitioners working with hardware and software (Lehman and Belady, 1985). To
understand the dynamic behavior of individual software systems, additional research is
needed to build on descriptions of universal behavior and seek explanation and
understanding of variations in behavior (Thompson, 1967). While we recognize that all
software systems change throughout their productive lives, they do not all change in the
same way, or at the same pace. This research identifies software volatility as a dynamic
characteristic of system behavior. In so doing, this work emphasizes the longitudinal
nature of evolutionary processes allowing comparison of the variations in behavior across

systems and over time.

Key to understanding the variations in software system is the ability to measure
important characteristics of software lifecycle evolution, including software volatility. In
applying engineering discipline to the endeavor of software engineering, measurement of
work products is considered essential (Tian and Zelkowitz, 1992). This discipline should
apply to studies of software behavior as well. Hence, the objective of this research is to
define a direct measure of software volatility, evaluate the proposed measurement
function, and empirically provide evidence that the new metric can be collected.
Software volatility measures can then be used to improve our theoretical understanding of

software evolution, and to assist practitioners in managing long-lived software systems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Because software programs generally do not change unless someone directly
alters source code, previous measures of software volatility have concentrated on counts
of software modifications. For example, versioning is a count of new editions of a
software system, e.g. with the releases of the commercial software product MS Windows
NT each successive version number may represent different amounts of additional or
modified source code. With the versions of Windows NT implemented between 1993 and
2000, the software system grew from 6.1M to 30M lines of code (LOC) (Hamm and Port,
1999). However, there are typically irregular time intervals and changes in software size
between releases. Versioning, therefore, provides only a relatively crude measure of
changes taking place. It marks major levels of change, but fails to track the size of change

or the periodicity of change.

Using a simple count of software modifications for a measure of volatility fails to
consider how often changes occur. If two software systems have both had the same
number of modifications, but one is 2 years old and the other is 5 years old, the older
system would intuitively be considered the less volatile of the two, ceteris paribus.
However, a simple rate of software modification over time may still not adequately
describe software volatility. Consider two systems with different patterns of lifecycle
maintenance such that one system is modified at the end of each month, and the other
annually undergoes 12 modifications at one time. The two systems each change at the
rate of 12 modifications per year, yet one is in a constant state of flux, and the other
remains unchanged for 11 of every 12 months. Hence, more descriptive measures of
software volatility must include a measure of the time between source code
modifications. System size must also be considered. If two systems report 10 changes of
equal size per month, but one system has 500 programs and the other has 10 programs,

the former is intuitively less volatile.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We propose a 3-dimensional measure of software system volatility. The first
dimension is a measure of software change size or amplitude. The second is a measure of
how often changes occur, or periodicity. By using amplitude and periodicity, we can
describe software volatility with a smooth sine curve similar to that used to describe
physical systems, e.g. sound waves (Bueche, 1969). However, software system behavior
is unlikely to be as consistent as a physical system. A more precise measure of software
volatility will include a third dimension, a measure of how closely software volatility
follows the implied cyclical pattern. As in the studies of environmental volatility by
Wholey and Brittain (1989), we add a third dimension, deviation, to indicate how closely
system behavior follows the cyclical patterns described by periodicity. Measurements for
each of these dimensions can be calculated periodically throughout the productive life of

a software system and analyzed to describe changes in system behavior as it evolves.

In section 2 we first briefly review prior research that is relevant to the
measurement of software volatility and then formally define a 3-dimensional measure of
software system volatility. In sections 3 and 4 we evaluate these dimensional measures
and provide empirical support to validate the proposed metrics. This work contributes to
our understanding of the lifecycle transformations of software systems by maintaining a
system-level perspective while analyzing the full extent of a system's productive life
span. Software lifecycle changes have traditionally been tracked at the program level. To
more fully understand lifecycle transformations occurring at the level of software systems
a more comprehensive approach is required. Software volatility should measure multiple
aspects of the changes occurring in a software system throughout its lifecycle. A system-
level measure of software volatility can be used for descriptive analysis of system
behavior. In addition, this project lays the groundwork for building theories to explain
and predict software volatility and analyze its contribution to software product attributes

and lifecycle maintenance processes and their outcomes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 AMULTI-DIMENSIONAL DEFINITION OF SOFTWARE VOLATILITY
In this section we define the attributes of software volatility and propose

measurement functions for each. In section 3 we develop a set of formal evaluation
criteria for measurement functions and assess our proposed measures. In section 4 we
provide empirical evidence of the validity of these metrics, and in sections 5 and 6 we

discuss the implications and application of these measures of software volatility

We start by clearly defining each attribute being measured. The use of a natural
language definition in addition to precise mathematical terminology is essential in
developing a consensus about what is being measured and how it should be done
Finkelstein and Leaning, 1984; Xia, 1999). For wide application and adoption of new
measures it is also important that such measures be software programming language and

technology independent (Churcher and Shepperd, 1995).

Previous empirical studies of software evolution have measured longitudinal
changes in software product attributes and compared those values at different points in
time (Banker and Slaughter, 2000). To understand the evolution of software systems and
analyze their dynamic behavior, we need to analyze characteristics of software behavior.

2.1 PRIOR STUDIES OF VOLATILITY

While a number of researchers have examined the problem of measurement of
software product and software process attributes, there is little empirical research that
measures dynamic characteristics of software behavior, particularly, software volatility.
Existing studies tend to use basic counts of software modifications as a direct measure
(Banker and Slaughter, 2000). In contrast, a predictive model for the logical stability of
software is based on other software product attributes (Yau and Collofello, 1980; 1985).
In that work the dependent variable is expressed as a rating of the ripple effect, i.e. the
effect of changes in other system programs feit by the program being evaluated.

3-5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To develop additional perspective on software volatility we turn to other research
to see how others have measured change. Some researchers have studied other types of
volatility using counts of change incidents Snyder and Glueck, 1982; Dess and Beard,
1984; Stroh, Baumann and Reilly, 1996). Schneidewind's study of process stability
examined trends by first calculating a change metric, and then analyzing the trend
function to indirectly measure stability (Schneidewind, 1999). Li, Etzkorn and Talburt
(2000) examine process instability with empirical measures of object-oriented software

evolution during the design phase.

We propose a direct measure of the multi-dimensional aspects of the volatility of
software systems. Organizational theorists Wholey and Brittain (1989) describe
environmental variation with three dimensions: amplitude, frequency and predictability
of variation. A primary premise of our work is that software systems, particularly
application systems, model their environments. As the business and technological
environment grows and changes, software systems must also change (Lehman and
Belady, 1985). This suggests that dimensional characteristics of environmental volatility
measures could be adapted to describe software volatility. We define 3 dimensions of
software volatility: amplitude, periodicity and deviation. Amplitude describes the
magnitude of change and periodicity measures the time interval between software
modifications. These two characteristics imply a smooth pattern of software
modifications. While many naturally occurring physical phenomena may be described
this way, software systems are unlikely to be so well behaved. We need a third
dimension, deviation, to describe how closely a system's behavior follows the pattern

implied by amplitude and periodicity.

2.2 AMPLITUDE
Amplitude measures the size of software modifications. Traditional measures for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

software size include lines of code (LOC), function point counts, token counts, equivalent
size metrics, entity counts, percentages of changed programs and object-oriented methods
(Boehm, 1997; Albrecht and Gaffney, 1983; Chidamber and Kemerer, 1994).

Amplitude can be measured as the sum of the size of all modifications made to a

software system. Amplitude can be measured for each time period ¢, as:
N,
Amplitude, = Z size(modification;)
Jml
where A, is the number of modifications in time period /.

We can use any of the previously validated measures of software size for our
measure Amplitude,. Division of Amplitude, by the total size of the system creates a
bounded scale invariant measure. We refer to this as normalized amplitude,
NAmplitude,.’

NAmplitude, = Amplitude, /
(total size of software system at end of time period ¢)

NAmplitude, is the normalized measure of amplitude for time period 1.

2.3 PERIODICITY
Periodicity measures time since software modifications (TSM). Manufacturing

and production researchers define Mean Time Between Failures (MTBF) as the total unit-
hours of operation divided by the total number of failures (Gaither, 1990). MTBF is
calculated as a single value for the entire product lifecycle. Studies of software reliability
find the Mean Time to Failure (MTTF) as the expected time the next software failure will
be observed (Lyu, 1995). By definition, MTBF and MTTF are concerned only with

failures or breakdowns.

* We use the term normalize to refer to a mathematical operation that eliminates units of measuremeant, i.c. we are
creating nonmalized measures to show relative measures with respect to the maximum possible value. Measures
normalized in this fashion will be scale invariant and bounded between 0 and 1.

3-7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We are seeking a measure of the time between software modifications, regardless
of their purpose, e.g. corrective, adaptive or enhancement. Time since software
modification, TSM, is the time (measured as days, weeks, months, etc.) elapsed since the
previous modification.

TSM;; = TSM for change event ; in time period ¢,

where ¢ = system age.

Periodicity is the mean TSM for a system during time period ¢.

N,
Periodicity, = -;'-—Z TSM , ,
J=t
where N, = total number of change events during time period ¢
To make comparisons of Periodicity, across systems of different ages, we
normalize Periodicity, by the number of time periods a system has been in existence at
the end of time period . Thus, normalized Periodicity for time period ¢, NPeriodicity,, is

defined as:
NPeriodicity, = Periodicity,/t.

2.4 DEVIATION
Deviation is the variance of the TSM; for the change events occurring in time

period «. Deviation should express the variation in both amplitude and periodicity. By
definition our measure of amplitude, NAmplitude, will vary over a software system's
lifecycle, but not within each time period . Therefore, the variance in amplitude will not
contribute to deviation. However, periodicity, measured by TSM;,, will vary within time
period /. We define Deviation as the variance of the TSM; (variance(TSM))..
Boundedness can be obtained by calculating the variance of normalized TSM;, i.e.
NTSM, = (TSM;,)/t. We refer to the normalized variance as NDeviation,.

NDeviation, = variance(NTSM;)
= variance(TSM;/t)
= (1/%)variance(TSM;,)

3-8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The mathematical properties of the elements of amplitude, periodicity and

deviation are shown in Table 1.

Construct € Real Numbers, 20, foralljt <1,foralljt
element for all j, t;

Amplitude Yes Yes No
Namplitude Yes Yes Yes
Periodicity Yes Yes No
NPFeriodicity Yes Yes Yes
Devistion Yes Yes No
NDeviation Yes Yes Yes

Table 1: Mathematical Properties of Proposed Measures

2.5 EXAMPLE CALCULATION OF SOFTWARE VOLATILITY MEASURES:
We demonstrate calculation of these measures with the following hypothetical

example. Assume system A is implemented with two programs, Al and A2. The

evolution of system A is shown in Figure 1.

=0 =1 ™2 ™3
! ! i
! AN
i 1
Program Al '—___@_@i Ay :
Program A2 %—@———
]
1
Program A3 4
i
i
' Program A4 i

a - f are change events indicating modifications
to programs Al and A2.

Figure 1: Evolution of System A

For purposes of this example, assume the programs in system A all use a common

programming language, and therefore lines of code (LOC) is an appropriate measure of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

software size. Assume Program A1 has 1000 LOC and A2 has 1500 LOC. At the end of
the first month one software modification (change event a) is made to program Al. The
modification size is 50 LOC. As shown in Figure 2, we calculate NAmplitude, =
50/2500 = 0.02, NPeriodicity, = 1.0/1.0 = 1.00, and NDeviation; = variance({1.0})/ 1.0

= 0.00.

End of Month 1 Program size =~ Modification size Modification time
(LOC) (LOC) since modification (in

months)

Al 1000 50 1.0

A2 1500 - —

Total 2500 50 1.0

Amplitude 0.02

(NAmplitude)

Periodicity 1.00

(NPeriodicity)

Deviation

(NDeviation) 0.00

Figure 2: Evolution of System A - Month 1

At the beginning of the second month of operation program A3 is added to the
system. Program A3 has 1200 LOC. During the second month of operation (0.8 through
the month) a modification (change event 5) involving 30 LOC is completed on program
Al. At the end of the second month program A2 is modified for the first time (change
event ¢). The modification involves 500 LOC. As shown in Figure 3, we calculate
NAmplitude; = 1730/3700 = 0.47, NPeriodicity, = mean({0.8, 2.0, 0.0}) / 2 = 0.47, and
NDeviation; = variance({0.8, 2.0, 0.0}) / 2* = 0.25.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

End of Month 2 Program size =~ Modification size Modification time

(LOC) (LOC) since modification (in
months)

Al 1000 30 0.8
A2 1500 500 20
A3 1200 1200 0.0
Total 3700 1730 2.8
Amplitude
(NAmplitude) 0.47
Periodicity
(NPeriodicity) 047
Deviation
(NDeviation) 0.25

Figure 3: Evolution of System A - Month 2

Program A4 is added to the system at the beginning of month 3. Program A4 has
500 LOC. Halfway through the third month program Al was modified by a software
modification of 200 LOC (change event e). Two modifications are completed on
program A2 with 100 LOC and 50 LOC, respectively. These modifications are
completed on day 10 and day 25 of the month, respectively (change events d and f). As
shown in Figure 4, we calculate NAmplitude; = 850/4200 = 0.20, NPeriodicity; =
mean({0.7,0.3,0.5, 0.0})/3 = 0.125, and NDeviation; = variance({0.7,0.3,0.5, 0.0} /3’ =
0.01.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

End of Month 3

Al
A2

A3
A4
Total

Amplitude
(NAmplitude)
Periodicity
(NPeriodicity)
Deviation
(NDeviation)

Program size
(LOC)

1000
1500

1200

300
4200

0.125

0.01

Modification size
(LOC)

200
100
50

200
850

Figure 4: Evolution of System A - Month 3

Modification time
since modification (in
months)

0.7

0.3

0.5

0.0
1.5

The three dimensional measures of volatility describe changing behavior in the

system. In this example we seec that over time, amplitude is becoming larger

(NAmplitude) and periodicity (NPeriodicity) is becoming shorter. System A starts as a

"well-behaved” system with low deviation (NDeviation).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Software Volatility for Example System A

1 \
09 ¢ N
! AN (mmgpene NATDItUdS ,
08 - enl@ NPenodicty ;——
‘ \ « &= NDevigtion
07 - A
s N\
2 \
%® 05 N\
°
>

. O\
01 - /-"’ T b |

Figure 5: System A Lifecycle Software Volatility

As summarized in Figure S, software volatility for system A shows an increase in
amplitude between the first and second months, and a decrease between the second and
third months. Periodicity is the same in months 1 and 2, but sharply decreases in month 3.
Deviation increases slightly between the first and second month, and then decreases in
the third month. We can infer from this that modifications get larger from month 1 to
month 2, then decrease in size between months 2 and 3. Decreasing periodicity between
months 2 and 3 indicates that modifications are being made more frequently. An increase
in deviation between months 1 and 2 indicates that there is a wider variance in the time
intervals between modifications during the second month. Decreases in deviation, as in
month 3, indicate a reduction in variance of the length of time intervals, i.e. modifications
are being implemented at more regular intervals. Therefore, lower deviation indicates
that the intervals between program modifications are nearly equal, and system behavior is

becoming more uniform.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In the next section we develop criteria for evaluation of the mathematical
properties of software volatility measures. These criteria are then applied to our proposed
measures. Subsequently we empirically validate the measures. We then measure
software volatility of two commercial systems and interpret their lifecycle software
behavior.

3 EVALUATION OF SOFTWARE VOLATILITY MEASURES
The prior sections introduced three software volatility metrics. These measures

should be rigorously evaluated and validated to see that they logically behave in a manner
consistent with the real world phenomena being studied. We approach this task in two
steps. First, we evaluate the measurement functions defined for amplitude, periodicity
and deviation for appropriate logical and mathematical properties. Then, we evaluate the
convergent, discriminant and predictive validity of these measures with empirical data
from a software portfolio of legacy systems. Logical evaluation of the measurement
functions, coupled with convergent and discriminant validity, will ensure that our
measures of amplitude, periodicity and deviation are valid in a precise sense. Predictive
validity is demonstrated empirically by the significance of these measures as explanatory
variables in a predictive model. This demonstration expands the validation of these
variables to external validity and illustrates the proposed measures' generalizability
(Rosenthal and Rosnow, 1991). We proceed with evaluation of the logical and
mathematical properties of the measurement functions for the dimensions of software

volatility.

We build our criteria from traditional measurement theory and evaluation criteria
used for other metrics (Allison, 1978; Weyuker, 1988; Chidamber and Kemerer, 1994).
We start by building a set of evaluation criteria to test our proposed measurement

functions from criteria used in previous research. Amplitude, periodicity and deviation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are characteristics used to describe software volatility. The measurement functions we
have defined are direct measures of these attributes. We have defined these measures
with natural language to build intuitive understanding of the concepts, and with
mathematical precision to reduce confusion and provide repeatable results (Finkelstein
and Leaning, 1984; Churcher and Shepperd, 1995; Schnedewind, 1992). Situational
context is important in the choice of which metrics and scales to apply Zuse and
Bollmann, 1990). As Schneidewind (1992) points out, evaluation criteria should fit the
context of intended use of the measure, and set reasonable validation criteria. We have
defined measurement functions for three attributes for software volatility. Intuitively, we
expect measures of these attributes to be non-negative, and to vary from one system to

another and throughout a system's lifecycle.

To determine the criteria we should use for evaluating measures of software
volatility, we start by listing attributes we logically expect from such measures. As with
the Goal-Question-Metric paradigm (Briand, Morasca and Basili, 1999) the criteria used
to evaluate measures of software system behavior must be relevant to our intuitive
understanding of amplitude (size) and periodicity (time). We have defined system-level
measures of software volatility. The definitions of these measures use aggregate
functions to describe lifecycle system behavior. Therefore, we need aggregate measures
that reflect combined behaviors. We defined system-level measures to allow the use of

these measures in comparing software systems of different sizes, ages and technologies.

Allison (1978) uses several criteria for evaluating the mathematical properties of

aggregate measures. Allison's criteria include
(A-1) If all individual elements equal 0, the measure equals 0.

(A-2) If any element > 0, then the measure > 0.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(A-3) The measure is scale invariant.

(A-4) The measure is bounded °

Allison's first two criteria are important in our evaluation. Allison developed
aggregate measures to describe system-level changes. We are defining aggregate
measures to describe changes in a system of programs. Behavior of individual software
programs must be reflected by any system-level measure. Thus, we evaluate system-
level measures to insure they will (1) be positive if any of the system elements has a

positive measure, and (2) will be zero if the measures for all system elements are zero.

The properties of (3) scale invariance and (4) boundedness are essential criteria if
software volatility measures are used to anmalyze lifecycle software behavior and to
compare behavior of multiple systems. Scale invariance also makes measurement
functions technology independent. This is an important characteristic for the
measurement of software behavior as it allows the flexibility of comparing measures of a

wider variety of systems and of the same system over time.

Weyucker (1988) identified 9 criteria for evaluating software complexity
measures. Although the appropriateness and completeness of these properties have been
widely debated, no specific alternative set of evaluation criteria has been proposed
(Cherniavhy and Smith, 1991; Churcher and Shepperd, 1995; Roy, 2001). We examine 3
of the 9 properties identified by Weyucker, and also used by Chidamber and Kemerer
(1994) to evaluate software complexity metrics. These are (W-1) monotonicity, (W-2)

noncoarseness and (W-3) equivalence. The other 6 criteria apply specifically to software

? Allison (1978) used a fifth criteria, sensitivity to transfers, to see if a measure is affected by the principle
of transfers when income is shifted from one group to another. This criterion applies mainly to measures
for economic analyses and is not directly applicable here.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

complexity metrics and are not relevant in evaluating system-level measures of software

volatility.

The property of (W-1) monotonicity implies that the measure of a combined
system (P+Q) would be larger than the individual measures of either P or Q alone
(Weyuker, 1988). General monotonicity requires only that the measure of (P+Q) be no
less than the measures of either P or Q alone (Tian and Zelkowitz, 1992). Logically,
monotonicity would apply to absolute measures of volatility. The defined dimensional
measures are relative measures normalized against the size or age of the system.
Normalization is needed to satisfy the properties of scaled invariance and boundedness.
After two subsystems are combined and the combined measures normalized,
monotonicity requirements can no longer be applied. As discussed below, measurement
qualities of scale invariance and boundedness are important for the analysis of software
system behavior over complete life spans and across systems of varying size and age.
For the purposes of our work, these qualities are considered more relevant than

monotonicity.

We seek measures distinguishing differences in behavior between systems with
divergent bebavior, i.e. a system that is never modified and one that is modified on a
daily basis. In addition, we need measures that will detect changes in lifecycle behavior,
i.e. volatility at time ¢ may or may not be equal to volatility measured at a later time, r-n.
In contrast, if two systems are the same size and age, and both are modified at the same
time and with modifications of the same size, we expect software volatility measures for
both systems to be equivalent. The definitions for Weyucker's properties (W-2)

noncoarseness and (W-3) equivalence describe these qualities.

Our fifth evaluation property (W-2) noncoarseness requires that any proposed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

metric provide variation in measurement.! More precisely, for a given measure, 1, there
exist two entities, P and Q, for which the measures of those two entities will differ, i.e.

given metric 1, 3 P, 3 Q, such that n(p) # n(Q).

Similarly, it is also important that software volatility measures exhibit a sixth
property, (W-3) equivalence. Thus, for a given measure, n, there can exist two entities, P

and Q, with the same measure, i.e. given metric 11, 3 P 3 Q such that n(P) = n(Q).

We now evaluate our proposed measures of amplitude, periodicity and deviation

against these 6 evaluation criteria. Table 2 summarizes the results of this evaluation.

Amplitude Periodicity Devigtion
NAmplitude | NPeriodicity | NDeviation
1. If individual elements all =0, so TRUE TRUE TRUE
does the measure
2, If any eiement > 0, then the TRUE TRUE TRUE
measure >0
3. Scale invariance and technology TRUE TRUE TRUE
indepedence
4. Lower bound 0 0 0
Upper bound 1 1 1
S. Noncoarseness TRUE TRUE TRUE
6. Equivalence TRUE TRUE TRUE
7. Monotonicity Not Not Not
applicable applicable applicable

Table 2: Evaluation of Proposed Measures

3.1 AMPLITUDE OF SOFTWARE VOLATILITY
Evaluating amplitude measurement function NAmplitude according to our criteria

we find:

(1) If all individual elements equal 0, the measure equals 0: True - if the size of all
modifications = 0, then all NAmplitude, = 0.

* Noncoarseness is similar to the evaluation criteria of discriminative power described by Schneidewind (1992).

3-18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(2) If any element > 0, then the measure > 0: True - if at least one modification size > 0,

then NAmplitude, > 0.

(3) Scale invariance and technology independence: True by definition for all normalized

measures.

(4) Boundedness: Lower Bound = 0: NAmplitude, is bounded below by 0; Upper
Bound = I: NAmplitude, is bounded above by 1 by definition.

(5) Noncoarseness: True - Software systems are of widely varying size, as are their

modifications. NAmplitude, will vary between systems and over time.

(6) Equivalence: True - Two systems, P and Q, of the same size can receive
modifications of the same size, making by NAmplitude, of P equal to
NAmplitude, of Q.

3.2 PERIODICITY OF SOFTWARE VOLATILITY
Evaluating periodicity measurement function NPeriodicity according to our

criteria we find:

(1) If all individual elements equal 0, the measure equals 0. True - if all TSM;, = 0, then
all Periodicity, = 0, and all NPeriodicity, = 0.

(2) If any element > 0, then the measure > 0.True - if at least one TSM;, > 0, then

Periodicity, > 0, and NPeriodicity, > 0.

(3) Scale invariance and technology independence - True for all normalized measures, by

definition.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(4) Boundedness: Lower Bound - Periodicity, and NPeriodicity, are bounded below by 0
because all elements are non-negative real numbers: Upper Bound - Periodicity,
is bounded above by ¢; NPeriodicity, is bounded above by 1; NPeriodicity, =
Periodicity, /t; Upper bound of NPeriodicity, = t/t = 1;

(5) Noncoarseness - True. Example: two systems, P and Q, are initially implemented on
the same day. Each receives one modification. P is modified on the 15" day of
its first month of operation and system Q is modified on the 20® day of its first
month of operation. NPeriodicity, for P is 0.5 and NPeriodicity; for Q is 0.67.

NPeriodicity; will vary between systems and over time.

(6) Equivalence - True - Two system, P and Q, are initially implemented on the same
day. Each receives one modification on the same day. NPeriodicity, for P will be

equivalent to NPeriodicity; for Q.
3.3 DEVIATION OF SOFTWARE VOLATILITY

Evaluating deviation measurement function NDeviation, according to our criteria
we find:
(1) If all individual elements equal 0, the measure equals 0. True

(2) If any element > 0, then the measure > 0. True

(3) Scale invariance and technology independence - True for all normalized measures by

definition.

(4) Boundedness - Lower Bound: by definition, variance and NDeviation, are bounded by

0. - Upper Bound: by definition, NDeviation, is bounded above by 1.

3-20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(5) Noncoarseness: True - Two systems, P and Q, are initially implemented on the same
day. Each receives one modification. P is modified on the 15™ day of its first
month of operation and system Q is twice, once on the 10" day of the month and
once on the 15® day of its first month of operation. NDeviation, for P is 0.0 and

NDeviation, for Q is 0.56. NDeviation, will vary between systems and across

time.

(6) Equivalence - True - Two system, P and Q, are initially implemented on the same
day. Each receives one modification on the same day. NDeviation, for both P
and Qs 0.0.

Therefore, our defined measures for amplitude, periodicity and deviation satisfy
these 6 evaluation criteria. In section 4 we now proceed to empirically validate these
measures. We use empirical data from a longitudinal record of modifications to a
software portfolio to test for convergent and discriminant validity. In section 5 we then
illustrate predictive validity with a regression of software complexity against our

proposed measures.

4 RESULTS FROM EMPIRICAL EVALUATION

4.1 ESTABLISHING VALIDATION CRITERIA
The measurement functions for the amplitude, periodicity and deviation of

software volatility should now be evaluated empirically to establish external validity.
There is no established set of universally accepted validation criteria for software metrics.
As with evaluation criteria for the mathematical properties of software metrics, we now
review some of the validation criteria used by other researchers examining software

metrics.
Basically, a measure is valid if it accurately characterizes the attribute it claims to
3-21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

measure (Schneiidewind, 1992). Statistical validation of new measures is established by
setting validation criteria, identifying appropriate statistical tests with confidence level a,
and performing the appropriate tests. [t is important to recognize that any particular
metric may be valid with respect to certain criteria and invalid with respect to others
(Schneidewind, 1992). Validation criteria used for testing new metrics must be relevant

to the characteristics being measured.

It is important to consider both the statistical significance of the relationship and
the degree of the association between the variables being analyzed (Baroudi and
Orlikowski, 1989; Emam and Birk, 2000). We consider a correlation weak if it is
statistically insignificant (p > 0.05) or has a low correlation (| correlation | < 0.40 and

strong correlation in the inverse is true.’

There are several types of external validity that may be addressed. This work
examines three in particular, convergent validity, discriminant validity and predictive
validity. Convergent validity is established by demonstrating a correlation between our
new measure and a comparable measure of the same property. Discriminant validity
demonstrates independence among the three measures of sofiware volatility. By
demonstrating the orthogonality of these measures, discriminant validity shows these
measures describe three separate dimensions of software volatility. The criteria for
establishing discriminant validity is to show weak correlations of each dimensional
measure with each of the other two. Predictive validity can be demonstrated by testing
predictive models and obtaining a strong correlation coefficient between independent and

dependent variables (Emam and Birk, 2000; Brand, Morasca and Basili, 1999).

$ The cut-off value for strong correlations (0.40) is somewhat lower than a 0.50 level that might be established for
correlation coefficients when testing predictive validity (Donaidson and Weymark, 1980). In this case we seek to
establish the existence of meaningful relationships between our measures of amplitude, periodicity and deviation and
other comparable measures for those same concepts. Because the comparable measures we have used for convergent
validation of periodicity and deviation are not bounded above, the association between our measures and those

3-22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2 EMPIRICAL VALIDATION OF PROPOSED SOFTWARE VOLATILITY MEASURES
In this analysis we use empirical data obtained from a large mid-Western retailer

with a portfolio of 23 legacy systems, including more than 3,500 programs. Over the
course of the portfolio’s 20-year history, software maintainers kept a detailed log of every
modification to each program by recording implementation date, purpose, type of change
and programmer responsible (Kemerer and Slaughter, 1999). The combined maintenance
logs for the portfolio provide researchers with the raw data for detailed information of

approximately 25,000 individual software modifications.

Convergent validity is supported by substantial correlation with conceptually
similar metrics (Rosenthal and Rosnow, 1991). We demonstrate convergent validity of
our measures of software volatility by calculating our 3-dimensional measures and any
logically comparable measures of amplitude, periodicity and deviation for each system

and comparing the correlation between each measure and its counterpart.

The irony of this comparison is that should completely satisfactory altemate
measures exist, we would not be defining new ones. In each case, we have identified a
comparable measure that should logically behave in a manner consistent with the
constructed measurement functions we have introduced despite its other potential flaws.
A comparable system-level measure for amplitude is the percentage of new programs in
the system. Percentage of new programs is a coarser measure than NAmplitude.
Percentage of new programs assumes that each program added is the same size as all
programs in the system. As we are comparing the proportional change in size of the
system with the proportional amount of modified code in the system, these two measures
should behave similarly. Periodicity can be measured by the inverse of number of
changes per time period. The correlation of NPeriodicity, and the number of

comparable measures will be weakened. Still we seek the strongest relationship possible, in an effort to define new
measurement functions for these phenomena.

3-23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

modifications per time period can be used to support convergent validity. Number of
modifications per time period is a coarser measure of activity in the system. Its reciprocal
will give an average of time between modifications for the period.® However, number of
modifications per time period is not bounded above, as is NPeriodicity, This difference
in the basic properties of NPeriodicity, and its comparable measure will weaken the
strength of their association. However, analysis of the correlations between them should
still be sufficient to provide evidence of convergent validity of NPeriodicity,. Coefficient
of variation measure is logically comparable to our proposed measure of deviation.’
Coefficient of variation for the TSM of a system during each time period r should provide
an alternative measure for the degree of variance in the time intervals between
modifications. However, coefficient of variation is not bounded above. This difference
in the basic properties of our measure of deviation, NDeviation, and its comparable

measure will weaken the strength of their association.

These comparable measures are not suitable substitutes for the measures we have
defined. In each case these comparable measures fail at least one of the logical and
mathematical evaluation criteria. However, they are useful in order to demonstrate
convergent validity of our measures of software volatility by calculating our 3-
dimensional measures and their logically comparable measures of amplitude, periodicity
and deviation for each system and comparing the correlations between each measure and

its counterpart.

Table 3 shows the correlation of our measure of NAmplitude and its comparable
measure, the percentage of new programs in the system. The portfolio's 23 systems all
show these measures to be strongly correlated with statistically significant correlations (p

< 0.05) of magnitude > 0.40, supporting convergent validity for NAmplitude as a

® This is similar to the calculation of MTBF that is based on the number of failures occurring over the full lifespan of
the system (Gaither, 1990).

3-24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

measure of amplitude.

System Lifespan Correlation(NAmplitude, p-value
(months) % new programs)
System 1 96 0.8984 0.0000
System 2 201 0.9062 0.0000
System 3 89 0.9662 0.0000
System 4 69 0.9939 0.0000
System § 235 09154 0.0000
System 6 223 0.9219 0.0000
System 7 85 0.9249 0.0000
System 8 234 0.9084 0.0000
System 9 96 0.9918 0.0000
System 10 246 0.9463 0.0000
System 11 62 0.9931 0.0000
System 12 122 0.9755 0.0000
System 13 87 0.9788 0.0000
System 14 189 0.8761 0.0000
System 15 137 0.9481 0.0000
System 16 125 0.9719 0.0000
System 17 73 0.9648 0.0000
System 18 120 0.9805 0.0000
System 19 66 09771 0.0000
System 20 195 0.9888 0.0000
System 21 110 0.9925 0.0000
System 22 212 0.9915 0.0000
System 23 129 0.9752 0.0000

Table 3: Correlations NAmplitude and % of New Programs

Table 3 lists the correlations of periodicity measured by NPeriodicity and its
comparable measure, the number of modifications each time period. Twenty-one of the
23 systems show statistically significant correlations (p < 0.05) with eleven strong
correlations of magnitude > 0.40. These empirical results provide support for the

convergent validity of NPeriodicity as a measure of periodicity.

7 Coeflicient of variation is a measure of dispersion (Dess and Beard. 1984).

3-25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

System Lifespan Correlation(NPeriodicity, | p-value
(months) Number of modifications)
System 1 96 -0.3555 0.0004
System 2 201 -0.6005 0.0000
System 3 89 -0.0587 0.5848
System 4 69 -0.5077 0.0000
System § 235 -0.3381 0.0000
System 6 223 -0.5545 0.0000
System 7 85 -0.5462 0.0000
System 8 234 -0.5545 0.0000
System 9 96 -0.5685 0.0000
System 10 246 -0.5788 0.0000
System 11 62 -0.3966 0.0014
System 12 122 -0.2753 0.0022
System 13 87 0.1297 0.2312
System 14 189 -0.4780 0.0000
System 15 137 <0.2796 0.0009
System 16 125 0.1876 0.0362
System 17 73 -0.1598 0.1769
System 18 120 -0.3672 0.0000
Svstem 19 66 -0.5201 0.0000
System 20 195 -0.4065 0.0000
System 21 110 -0.8368 0.0000
System 22 212 -0.3576 0.0000
System 23 129 -0.1838 0.0371

Table 4: Correlations of NPeriodicity and Number of Modifications

Table 5 shows that twenty of the portfolio's 23 systems have statistically
significant correlations between deviation measured by NDeviation and its comparable
measure, coefficient of variation. Twelve of the 23 systems show strong correlations
with pair-wise correlations of magnitude greater than or equal to 0.40. These resuits

provide support for convergent validity of NDeviation as a measure of deviation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

System Lifespan Correlation(NDeviation, p-value
(months) Coefficient of Variation)
System 1 96 0.3528 0.0004
System 2 201 0.1717 0.0148
System 3 89 0.4264 0.0000
System 4 69 0.7159 0.0000
System S 235 0.4100 0.0000
System 6 223 0.4391 0.0000
System 7 85 0.1574 0.1502
System 8 234 0.2065 0.0015
System 9 96 0.5521 0.0000
System 10 246 0.1626 0.0106
Svstem 11 62 0.4769 0.0001
System 12 122 0.3545 0.0001
System 13 87 0.3073 0.0038
System 14 189 0.4525 0.0000
System 15 137 0.2281 0.0074
System 16 125 0.1722 0.0549
System 17 73 0.4707 0.0000
System 18 120 0.3851 0.0000
System 19 66 0.4953 0.0000
System 20 195 0.4590 0.0000
System 21 110 0.9559 0.0000
System 22 212 0.5822 0.0000
System 23 129 0.2644 0.0025

Table 5: Correlations of NDeviation and the CoefTicient of Variation

Discriminant validity is supported by a lack of correlation between conceptually
unrelated measures (Rosenthal and Rosnow, 1991). Discriminant validity among
amplitude, periodicity and deviation is demonstrated by weak correlations among
NAmplitude,, NPeriodicity; and NDeviation,.

Correlations among the measures of amplitude, periodicity and deviation are
calculated for each month in the lifecycles of the portfolio’s 23 systems (Table 6). In
nineteen systems there are weak correlations between NAmplitude, and NPeriodicity, (10

3-27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

were statistically insignificant and nine others had | correlation | < 0.40). Twenty-two
systems show weak correlations between NPeriodicity, and NDeviation, (thirteen were
statistically insignificant and nine others had | correlation | <0.40). All 23 systems have
weak correlations between NAmplitude, and NDeviation, (22 were statistically
insignificant and one other had | correlation [< 0.40). Thus, these data support

discriminant validity among these dimensions.

System Lifespan | Corr(NAmplitude, Corr(NPeriodicity,
(months) | NPeriodicity) | CORR(NAMPLIT NDeviation) |
p-value UDE, p-value
NDEVIATION) |
value
System 1 96 -0.1677 | (0.1024) 0.0552 | (0.5931) 0.01571(0.8794)
System 2 201 -0.32221(0.0000) | -0.0079{(09111)| -0.0517|(0.4662)
System 3 89 -0.1526 (0.1535) | -0.0269 | (0.8025) 0.1394 [(0.1926)
System 4 69 -0.4731 | (0.0000) 0.06201(0.6131) | -0.2750(0.0222)
System § 235 -0.2162((0.0008) | -0.0126((0.8471)| -0.1533{(0.0187)
System 6 223 -0.2977 | (0.0000) 0.15401(0.0215) | -0.1803 | (0.0069)
System 7 85 -0.6191(0.0000) | -0.0097((0.9301){ -0.2673(0.0134)
System 8 234 -0.23521(0.0003) | -0.0234[(0.7216) | -0.1065 | (0.1042)
System 9 96 -0.4702 | (0.0000) | -0.0106](0.9185)| -0.1954|(0.0564)
_System 10 246 -0.2405 | (0.0001) 0.01271(0.8423) | -0.0464 |(0.4691)
System 11 62 -0.14591(0.2577) | -0.0344|(0.7909) | -0.0724 | (0.5760)
System 12 122 -0.14861(0.1024) | -0.0786((0.3897) { -0.00271(0.9761)
System 13 87 -0.1831](0.0897) | -0.0935](0.3891) 0.2052 | (0.0566)
System 14 189 -0.23771(0.0010) | -0.0452[(0.5368) | -0.2813(0.0001)
System 15 137 -0.1552](0.0702) | -0.1283(0.1352) | -0.1282(0.1355)
System 16 125 -0.1712 | (0.0563) 0.0093 | (0.9180) 0.7901 | (0.0000)
System 17 73 -0.1563 | (0.1867) 0.0200 | (0.8664) 0.0065 | (0.9563)
_System 18 120 -0.1424 1 (0.1207) | -0.1358{(0.1390) { -0.1041 |(0.2578)
_System 19 66 -0.35971(0.0030) | -0.0310(0.8046) | -0.3224 | (0.0083)
System 20 195 <0.1963 | (0.0060) | -0.0436 | (0.5448) | -0.2422 | (0.0006)
System 21 110 -0.5483(0.0000) | -0.0123(0.8984) | -0.2548](0.0072)
System 22 212 -0.2694 | (0.0001) | -00073(0.9154) | -0.1726(0.0119)
System 23 129 -0.14891(0.0921) | -0.0349(0.6947)| -0.0155|(0.8617)

Table 6: Correlations Supporting Discriminant Validity

In summary, the new measures have been evaluated for the mathematical

properties we desire for aggregate measures of size and time. The empirical data support

3-28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

convergent and discriminant validity. Convergent validity tells us that these measures
behave in a manner consistent with other logically comparable measures. Discriminant
validity demonstrates that these three measures describe three different attributes of
software volatility. We now illustrate the relationship between these measures and a
traditional measure of a software characteristic, software complexity. By using a simple
predictive model we test a multivariate regression of software complexity against lagged

terms for amplitude, periodicity and deviation.

4.3 PREDICTIVE VALIDITY
Predictive validity is established by determining the degree to which a trait or

characteristic can predict future outcomes. To demonstrate the predictive validity of
software volatility, we use a simple model for software complexity. We posit that
software volatility in a previous time period will significantly affect software complexity
in the current time period. Banker, Davis and Slaughter (1998) propose and support a
model demonstrating the link between software maintenance processes and complexity.
They show that maintenance activity results in increased levels of software complexity.
In the same manner, we posit that increased software volatility from sofiware
modifications will result in increased software complexity. Our model uses the lagged
software volatility dimensions of amplitude,.;, periodicity,, and deviation., as

explanatory vanables.
complexity, = B, + B,amplitude, , + B, periodicity, , + B,deviation, ; +&,
Software system complexity,, normalized by total system size,, is the dependent

variable. There are a number of software complexity metrics available (Cook and

Roesch, 1994; Harrison, 1990; Pressman, 1992). We ran empirical tests for this model

3-29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

using six different standard complexity metrics.’ In each case, the total system size
measured in lines of code was used to control for system size and allow comparison of
results between systems.’ Coefficients for the explanatory variables were estimated using
ordinary least squares estimation procedures. The multivariate regression was estimated
for each of the 23 systems, for each of the 6 normalized complexity metrics. In total we
estimated 138 equations for our proposed measures of amplitude, periodicity and

deviation, and 138 equations for the comparable measures of those same attributes.

The adjusted R? for two-thirds of the estimated 138 regressions using our
proposed measures was greater than or equal to the adjusted R’ for the corresponding
estimates using the comparable measures. As one would expect, using software volatility
to predict software complexity is more significant for more volatile systems.

Summarized results of these estimated regressions are summarized in Table 7.

Predictive Validity

Software Complexity Metric: | Average R squared Average R squared

(proposed measures) (comparable measures)
McCabe’s 0.2646 > 0.2003
Haistead’s nl 0.3530 > 0.2798
Halstead’s n2 03478 > 0.2668
Halstead’s N1 02803 > 0.1910
Halstead’s N2 03160 > 0.2255
Calls 03694 > 0.2719

Table 7: Summary of Linear Regression Estimates for the Software Portfolio

Our results show no significant multicollinearity among the measures for
amplitude, periodicity and deviation. Low mean Variance Inflation Factors, VIF,
indicate a lack of multicollinearity among explanatory variables (Belsley, Kuh and
Welsch, 1980). This provides further confirmation of the independence of amplitude,

periodicity and deviation as unique dimensions of software volatility.

* Thesc measures are McCabe's cyclometric measure, Halsicad's primitive measures nl, n2, N1 and N2, and the number
of calls (Cook and Roesch, 1994: Harrison, 1990). Each was normalized by the total system LOC at time 1.

3-30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In summary, the three proposed measures (1) improve on standard existing
measures in explaining variance of standard software complexity measures and (2)

provide support for predictive validity.

S DISCUSSION

How can managers use these dimensional measures of software volatility to
interpret changes in lifecycle system behavior? We start with a graphical representation
of amplitude, periodicity and deviation for an idealized completely stable system. Using
the measurement function for amplitude, by definition NAmplitude, = 0 for each time
period + when no software change events occur. Given the measurement function
NPeriodicity,, as the number of software change events in time period ¢ approaches 0, the
limit of NPeriodicity; = 1. Hence, NPeriodicity, = 1 for any time period ¢ in which no
software change events occur. Given the measurement function NDeviation,, as the
number of software change events in time period 7 approaches 0, the limit of NDeviation,
=0, 1.e. NDeviation, = 0 for any time period ¢ in which no software change events occur.
Hence, NDeviation, = 0 when no modifications occur in time period . If there are no
software modifications in any time period throughout the productive life span of an
idealized stable system, NAmplitude, = 0, NPeriodicity, = 1 and NDeviation, = 0, for all 1.
The software volatility for the lifecycle of a hypothetical idealized stable system would
be graphed as in Figure 6.

? All programs in each system were written in the same language (Jeffrey and Lawrence, 1979).

3-31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 Gl ulpnlp==l) NPeriodicity

$

|

e 08 -

2 06 -

s

-; 0.4 -

5 0.2 - NAmplitude
& o Atbusdusdutbutdntduntdtdntdund NDeviation

0 12 24 36 48 60

application system age (in months)

Figure 6: Hypothetical Idealized Stable System

We compare this idealized stable system with two actual systems in our portfolio.
System 7 appears to be fairly stable throughout its more than seven year life span. There
were two brief periods of volatility. The first one occurred when system 7 was about
eighteen months old. Amplitude increased to 0.2 and periodicity became short. The
second period of volatility occurred when system 7 was between 65 and 70 months old.
Periodicity fell and amplitude increased indicating more frequent and larger
modifications. Deviation increased indicating that some programs in the system were

changing frequently and others were not. (See Figures 7a, band c.)

-32

w

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

System 7 Periodicity

12 -
1

08-

06 -

04 -

02!
0 & ‘ r ,

02] 20 40 80 80 100

APPLICATION AGE

Figure 7a: Lifetime Volatility System 7 - Periodicity

System 7 Amplitude

.02 o) 20 40 60 80 100
APPLICATION AGE

Figure 7b: Lifetime Volatility System 7 - Amplitude

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

System 7 Deviation

0.014 -
0.012 -) ¢

0.01 -
0.008 -
0.006 -
0.004 -

0.002 -
0
.~ -0.002 0 20 40 80 80 100
APPLICATION AGE

Figure7c: Lifetime Volatility System 7 - Deviation

System 23 appears to be relatively stable for only the first 18 months of its
productive life. Starting at approximately 18 months of age the system became volatile
with frequent, relatively small software changes for the rest of its more than 10 year life
span. Inconsistency of behavior between programs in system 23 is indicated by deviation

measured by NDeviation, > 0 (See Figures 8a b and c.)"

' When amplitude, periodicity and deviation are plotied on the same graphical scale, changes in deviation are difficult
tosce. Even though all threc are bounded by 0 and 1, the magnitude of deviation as defined tends to be much smaller
than the other two.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

System 23 Periodicity

020 20 4 6 8 10 120 140
APPLICATION AGE

Figure 8a: Lifetime Volatility System 23 - Periodicity

System 23 Amplitude

020 20 40 60 80 100 120 140
APPLICATION AGE

Figure 8b: Lifetime Volatility System 23 - Amplitude

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

System 23 Deviation

APPLICATION AGE

Figure 8c: Lifetime Volatility System 23 - Deviation

We observe that lifecycle maintenance activity started about eighteen months
after initial system implementation. Software managers can compare the behavior
patterns of system 7 and system 23, and conclude that system 23 will require more
constant levels of maintenance support while system 7 requires infrequent support. This
information can be useful for resource planning both in the short term, e.g. budgeting
system support resources, and in the long term, e.g. as input to the "repair or replace”

decision for an application system.

6 SUMMARY

The definition, evaluation and validation of a new system-level measure of
software volatility contribute to the collective theory base for software evolution. A
system-level multi-dimensional measure of software volatility makes it possible to
develop a more complete picture of lifecycle software behavior. By presenting a multi-
dimensional measure of software volatility, software system change processes can be
analyzed concurrently for the amplitude, periodicity and deviation of software volatility.

We defined three measures describing these different attributes of software volatility in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

order to facilitate its description as a dynamic behavior of software systems. By
rigorously evaluating these measures, we establish a set of criteria for evaluation of
software volatility measures. Evaluation criteria were developed from measurement
literature and applied against our proposed measures. The proposed measures were then
validated for convergent and discriminant validity. Their usefulness as predictors was
demonstrated with a regression of complexity against lagged values of amplitude,
periodicity and deviation. This multi-dimensional system-level software volatility
measure provides technology independent measures that allow comparison of system
behavioral changes over time and across systems. Interpretation of lifecycle volatility

was demonstrated with empirical data for two software systems.

This work can be expanded by analyzing software volatility in a number of ways.
The development of these direct, objective measures lays the groundwork for
development of theoretical models of software system behavior. Theoretical models of
the factors contributing to software volatility can be built and tested with parametric
methods for regression analysis. Analyses can be used to build and test models of the
drivers of software volatility and examination of the effects of software volatility on

lifecycle software maintenance outcomes such as costs and errors.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

REFERENCES

Albrecht, A.J., and Gaffney, J.E., Jr., “Software Function, Source Lines of Code, and
Development Effort Prediction: A Software Science Validation”, [EEE
Transactions on Software Engineering, vol. 9, no. 6, pp. 639-648, Nov. 1983.

Allison, P.D., "Measures of Inequality”, American Sociological Review, vol. 43, pp. 865-
880, Dec. 1978.

Banker, R.D. and Slaughter, S.A., "The Moderating Effects of Structure on Volatility and
Complexity in Software Enhancement”, Information Systems Research, vol. 11,
no. 3, pp. 219-240, Sept. 2000.

Baroudi, J.J. and Orlikowski, W.J., "The Problem of Statistical Power in MIS Research"”,
MIS Quarterly, pp. 87-105, Mar. 1989.

Blady, L.A. and Lehman, M.M., "A Model of Large Program Development”, IBM
Systems Journal, no. 3, pp. 225-252, 1976.

Belsley, D.A., Kuh, E., and Welsch, R.E., Regression Diagnostics: Identifying
Influential Data and Sources of Collinearity, John Wiley and Sons, 1980.

Boehm, B.W., "Software Engineering Economics”, Software Project Management:
Readings and Cases, C.F. Kemerer (Ed.), R. D. Irwin/McGraw-Hill, 1997.

Briand, L., Morasca, S., and Basili, V.R., "Defining and Validating Measures for Object-
Based High-Level Design", [EEE Transactions on Software Engineering, vol. 25,
no. 5, pp. 722-743, Sept./Oct. 1999.

Buecbe, F., Introduction to Physics for Scientists and Engineers, McGraw-Hill, 1969.

Cherniavsky, J.C. and Smith, C.H., "On Weyucker's Axioms for Software Complexity
Measures”, [EEE Transactions on Software Engineering, vol. 16, no. 6, pp. 636-
638, June 1991.

Chidamber S.R. Chidamber and C.F. Kemerer, "A Metrics Suite for Object Oriented

Design", [EEE Transactions on Software Engineering, vol. 20, no. 6, pp. 476-493,
June 1994,

Churcher, N.I, and Shepperd, M.J., "Comments on 'A Metrics Suite for Object-Oriented
Design' ", [EEE Transactions on Software Engineering, vol. 21, no. 3, pp. 263-
265, March 1995.

Cook, C.R. and Roesch, A., ":Real-time Software Metrics", Journal of Systems and
Software, vol. 24, no. 3, pp. 223-237, 1994.

Dess, G.G. and Beard, D.W., "Dimensions of Organizational Environments”,
Administrative Science Quarterly, vol. 29, pp. 52-73, 1984.

Donaldson, D., and Weymark, J.A., "A Single-Parameter Generalization of the Gini
Indices of Inequality”, Journal of Economic Theory, vol. 22, pp. 67-86, 1980.

Emam, K. El, and Birk, A., "Validating the ISO/IEC 15504 Measure of Software
Requirements Analysis Process Capability", [EEE Transactions on Software
Engineering, vol. 26, no. 6, pp. 541-566, June 2000.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Finkelstein, L., and Leaning, M.S., "A Review of the Fundamental Concepts of
Measurement”, Measurement, vol. 2, no. 1, pp. 25-34, Jan.-Mar. 1984.

Gaither, N., Production And rations ement: A Problem-Solving and Decision-
Making Approach, 4™ Edition, The Dryden Press, 1990.

Hamm, S., and Port, O., “The Mother of All Software Projects”, Business Week,
February 22, 1999, pp. 69-76.

Harrison, W., "Using Metrics to Allocate Testing Resources in a Resource Constrained
Environment”, Portland State University Department of Computer Science, 1990.

Jeffrey, D.R., and Lawrence, M.J., "An Inter-Organizational Comparison of
Programming Productivity”, Proceedings of the 4" International Conference on
Software Engineering, 1979.

Kemerer, C.F. and Slaughter, S.A., "An Empirical Approach to Studying Software

Evolution", [EEE Transactions on Software Engineering, vol. 25, no. 4, pp.1-17,
1999.

Lehman, M.M., and Belady, L.A., Program Evolution: Processes of Software Change,
Academic Press, 1985.

Lehman, M.M., and Ramil, J.F., "The Impact of Feedback in the Glubal Software
Process”, The Journal of Systems and Software, vol. 46, no. 2-3, pp. 123-134,
April 15, 1999.

Li, W,, Etzkorn, L., Davis, C. and Talburt, J., "An Empirical Study of Object-Oriented
System Evolution”, Information and Software Technology, vol. 42, no. 6, pp.
373-381, April 15, 2000.

Lyu, M.R., Handbook of Software Reliability Engineering, [EEE Computer Society

Press, 1995.
Pressman, R.S., Software Engineering: A Practitioner's Approach, 3™ Edition, McGraw
Hill, 1992.

Rosenthal, R. and Rosnow, R.L., Essentials of Behavioral Research: Methods and Data
Analysis, 2nd Edition, McGraw-Hill, Inc., 1991.

Roy, Gursaran and Gurdev, On the Applicability of Weyuker Property 9 to Objet-
Oriented Structural Inheritance Complexity Metrics, IEEE Transactions on
Software Engineering, vol. 27, no. 4, pp. 381-384, April 2001.

Schnedewind, N.F., "Methodology for Validating Software Metrics", [EEE Transactions
on Software Engineering, vol. 17, pp. 253-266, 1992.

Schnedewind, N.F., "Measuring and Evaluating Process Using Reliability, Risk, and Test

Metrics", [EEE Transactions on Software Engineering, vol. 25, no. 4, pp. 769-
781, Nov./Dec. 1999.

Snyder, N.H., and Glueck, W.F., "Can Environmental Volatility be Measured
Objectively?”, Academy of Management Journal, vol. 25, pp. 185-192, 1982.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Stroh, L., Baumann, B.J., and Reilly, A., "Agency Theory and Variable Pay

Compensation Strategies”, Academy of Management Journal, vol. 39, no. 2, pp.
751-767, 1996.

Thompson, J.D., Organizations in Action, McGraw Hill Book Company, 1967.

Tian, J., and Zelkowitz, M.V_, "A Formal Program Complexity Model and Its
Application”, Journal of Systems and Software, vol. 17, pp. 253-266, 1992.

Weyuker, E., "Evaluating Software Complexity Measures", IEEE Transactions on
Software Engineering, vol. 14, pp. 1357-1365, 1988.

Wholey, D.R. and Brittain, J., "Characterizing Environmental Variation", Academy of
Management Journal, vol. 32, no. 4, pp. 867-882, 1989.

Van Homn, E.C., "Software Must Evolve", Software Engineering, vol. 1, H. Freeman and
P.M. Lewis, (Eds.), Academic Press, 1980.

Xia, F. Xia, "Look Before You Leap: On Some Fundamental Issues in Software
Engineering Research”, Information and Software Technology, vol. 41, no. 10,
pp. 661-672, 1999,

Yau, S.S. and Collofello, J., "Some Stability Measures for Software Maintenance", [EEE
Transactions on Software Engineering, vol. 6, no. 11, pp. 545+, Nov. 1980.

Yau, S.S. and Collofello, J., "Design Stability Measures for Software Maintenance”,

IEEE Transactions on Software Engineering, vol. 11, no. 9, pp. 849-856, Sept.
1985.

Zuse, H., and Bollmann, M.P., "Software Metrics: Using Measurement Theory to
Describe the Properties and Scales of Static Software Complexity Measures”,
SIGPLAN Notices, vol. 24, no. 8, pp. 23-33, 1990.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHATER 4:
RESEARCH QUESTION 2 -

ANTECEDENTS OF SOFTWARE VOLATILITY

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

INTRODUCTION

"Why do we have to keep fixing this software? Why can't you write a good
system so we won't need these constant changes?" Most software managers have heard
these comments from their users. The truth is that change is a constant in our world and
information systems are no exception. Because they are embedded in their respective
organizations, information systems affect, and are affected by, the organizations they
serve (Lehman and Belady 1985; Pfleeger, 1998). Organizations must make constant
adjustments to survive in a habitually changing competitive environment (Porter, 1980;
Davis and Olson, 1985; Morgan, 1997). Information systems must also evolve to provide
the information their organizations need to remain competitive. Because information
systems must provide required information in a timely and accurate manner to the people
and organizations that need it, the systems must constantly be maintained and enhanced

to satisfy the information requirements of a perpetually changing organization.

Even facing these constant changes, many systems operate productively for
decades. It is estimated that the average age for enterprise general ledger application

systems in Fortune 1000 companies is 15 years old (Kalakota and Whinston, 1996).

Some information systems change a great deal during their productive lifespans,
and others remain unchanged for months and years at a time. Does this automatically
mean systems that change are bad, and those that never change are good? Is change
always something to be avoided? If an information system remains stable and fails to
change with its environment, the system may cause a drag on the organization and hinder

organizational success (Truex, Baskerville and Klein, 1998). Therefore, it is important to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

understand the nature of change and the associated change processes for information

systems.

Growth and change of information systems is accomplished through lifecycle
software maintenance. To understand the nature of information system change we must
understand the "dynamic behavior of programming systems as they are maintained and
enhanced over their life times", i.e. software evolution (Belady and Lehman, 1976).
Software change is a characteristic of the behavior of information systems as they evolve
throughout their productive lifecycles. Software volarility describes software changes
occurring as a result of lifecycle maintenance. By envisioning a longitudinal model of an
information system changing to keep pace with changes in its environment, we see a
system evolving along with its environment. Analysis of software volatility throughout a
system's lifecycle, and across different systems, can improve our understanding of
software change and system behavior. With this increased insight into software evolution
researchers and managers can enhance their understanding of software evolution and

improve management of lifecycle maintenance processes.

Some environments are more volatile than others. Some organizations change
more than others. Some tasks are more variable than others. These differences result in
differences in the volatility of information systems. At each level through this
progression, entities cope with changes in surrounding environments through the
dynamics of interfaces to each of those environments. The objective of this research is to
identify those dynamic environmental attributes that drive software volatility in
information systems. We start by examining factors in the competitive environment and

work progressively inward toward more localized factors at the task environment and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

basic system levels, i.e. the system's inner environment. All lifecycle maintenance
activities, including corrective and adaptive modifications, enhancements and new
program creations, serve as mechanism for software change (Pfleeger, 1998). Thus, we
recognize that these lifecycle maintenance activities are catalysts for software volatility.
Therefore, we build our conceptual model from two sets of prior research: research on
drivers of software volatility, and research on drivers of lifecycle maintenance and

software change.

In the remainder of this paper we build on this discussion by defining dependent
and explanatory variables to develop a conceptual model of the antecedents of software
volatility. After examining prior research and grounding theory for the influence of each
of these concepts, we establish operational variables for these concepts. Seven
hypotheses describe the relationship of each of these variables to our measure of software

volatility.

Empirical data obtained from the 20-year maintenance logs of a large company
are used to test the model through regression analysis. Regression estimates for the full
lifecycle maintenance records of 23 information systems are analyzed. Results indicate

that attributes of environmental interfaces at all levels drive software volatility.

By maintaining a system-level perspective we have built a predictive model for
software volatility. Using this model, researchers can broaden and deepen their
understanding of the transforming processes and dynamic behavior observed during
software evolution. Managers can improve their ability to anticipate change and design

adaptable systems while maintaining a lifecycle perspective for system support resource

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

requirements. We begin by reviewing the relevant literature on software change and

change processes in software evolution.

SOFTWARE EVOLUTION
Software change and change processes have been studied in a number of contexts.

One perspective for analyzing and understanding lifecycle software change is the study of
software evolution. By its very nature software evolution occurs incrementally over long
periods of time. Based in general systems theory, studies of software evolution
emphasize longitudinal descriptions of system characteristics and the change processes
affecting them. Using analytical methodologies a number of researchers apply a top-
down systems approach describing the processes that affect information systems and the
transformational forces that influence them (Lehman, 1977; Woodside, 1980; Lehman,

1980, 1981, 1984, Yau, Nicholl, Tsai and Liu, 1988; Perry, 1994; Lehman, 1998).

Based on a series of empirical and analytical studies, Lehman et al. have
developed eight laws of software evolution for embedded systems (Lehman and Belady,
1985; Lehman, et al., 1997). Much of the research on software evolution has sought to
support these laws using relatively short data collection periods for operating systems
software. (Lehman and Belady, 1985; Lehman, et al., 1997). Four of the eight laws on
software evolution describe changes in system characteristics, while the other four deal
with the interfaces and exchange of information between organizations and their

embedded information systems (Lehman, et al., 1997).

Current research on software evolution is headed in a number of different
directions. Software evolution is providing a theoretical foundation for analysis of

reverse engineering technologies and new perspectives on cost estimation tools. In

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

addition, further work is being done on the FEAST/2 (Feedback Evolution and Software
Technology) project, further investigating Lehman's eighth law, the Law of System
Feedback (Lehman, et al., 1997).

SOFTWARE VOLATILITY
Another research perspective has concentrated on change processes and the

definition and measurement of software volatility. Prior research on volatility relating to
information systems has described software volatility as change in software product, or as
change in software process. Practitioners routinely track software product change with
version numbers. Traditional system-level versioning fails to track the size or frequency
of software changes. Researchers often rely on token counts of modifications to measure
software product change (Butcher, 1997; Banker and Slaughter, 2000). Yau and
Collofello (1980; 1985) developed a measure of system instability by calculating logical

ripple effect based on counts of cyclomatic complexity in software modules.

Software process volatility is measured by counting changes in data models or
objects during software design and development (Marche, 1993; Li, et al., 2000). Heales
(2000) develops a software volatility index to measure effort spent on deep structural
changes during software change processes. However, all of these measures fail to answer

the question about how often information systems are changed.

Existing measures of token counts of modifications over time are usually
maintained at the program or module level. We define an aggregate measure of software
volatility at the system-wide level that can be calculated at different times throughout
productive system lifecycles. By recognizing the connection between an information

system and its environment, we build a model describing antecedents of software by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

examining dynamic factors in that environment. Our measure of software volatility is

used to empirically test this model.

Software volatility is a characteristic of the dynamic behavior observed in
software evolutionary processes. This dynamic behavior implies system change. Some
systems change frequently, and some seldom change. Each information system evolves
and changes at its own pace. We identify information system change as software
volatility so we can identify and analyze the differences in the timing of these changes.
To concentrate on the time dimension of this software volatility we measure the intervals
between software modifications. Increases in software volatility will manifest
themselves as changes that will occur at shorter, more frequent, intervals. Decreases in
software volatility will be seen as less frequent, longer, intervals between changes. This
could be measured as Mean Time Between Failures (MTBF) as has been done in some
software research studies (Lyu, 1996; Gaither, 1990). However, the measures used in
software reliability engineering are only modeled for corrective software modifications.
For studies of software evolution we need to consider all software modifications,
regardless of the motivation for change, e.g. corrective, adaptive, enhancement and new
program creation. To facilitate an analysis of changes in lifecycle system behavior, the
time dimension measure of software volatility needs to be calculable at specified time
periods throughout a system's productive life span. MTBF is generally calculated once,

or only a few times, during the useful life of an artifact (Gaither, 1990).

We use periadicity as a measure of the time dimension of software volatility to
describe mean time intervals between software modifications (Barry and Slaughter,

2000). Periodicity can be calculated as an aggregate measure at the system-wide level at

4-6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

any time interval needed for our analysis. This provides a descriptive measure to identify
frequency of change. Periodicity will tell researchers and managers how often lifecycle
software maintenance activities occur in each productive system. As we analyze
software volatility we note that increased software modifications occur at more frequent
intervals with decreasing periodicity. Alternatively, increasing periodicity indicates

decreased levels of software volatility.

Software volatility can also be described by amplitude and deviation (Barry and
Slaughter, 2000). Amplitude is defined as the size of software change, and deviation
indicates the variation in behavior among systems. This research uses one dimension of

software volatility, periodicity, as our dependent variable for two reasons.

First, the body of literature providing a foundation to identify antecedents of
software volatility is most closely linked with token counts of modifications.
Modification counts are logically comparable to the reciprocal of periodicity (Barry and
Slaughter, 2000). Therefore, we can construct our model using hypotheses with rationale
from this body of research. Because our previous work demonstrated discriminant
validity among periodicity, amplitude and deviation, the dimensions of software volatility
(Barry and Slaughter, 2000). The independence of periodicity, amplitude and deviation
requires separate models for each of the dimensions of software volatility. To maintain a

strong focus for the current investigation we pursue a single line of investigation.

The objective of this research is to identify the factors that drive software
volatility as measured by periodicity, as in Figure 1. In the next section we review prior
work on drivers of software change to develop a conceptual model predicting software

volatility.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ve Environ i

Business Size

Task Environment | (]

Organizational Role

Maintenance Team Instability | Volatility:
Purchased Software Package Periodicity
CASE tool use

Software Maintenance Profiles

Basic System Characteristics

Figure 1: Antecedents of Software Volatility

ANTECEDENTS OF SOFTWARE VOLATILITY
Each of the existing studies of software volatility uses a different definition and

measure of software volatility and, therefore, as a consequence, predictive models for
software volatility identify a wide variety of explanatory factors. Models predicting
volatility of software products concentrate on those characteristics driving software
change (Butcher, 1997; Banker and Slaughter, 2000; Yau and Collofello, 1980, 1985).
Those models predicting volatility of software process focus analysis on attributes of both
the software process and software product (Marche, 1993; Li, et al., 2000; Heales, 2000).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We draw from two bodies of literature to develop our model. First, we recognize
that information systems are embedded in the overall general environment. As
environments change, these information systems must change and evolve to remain
productive. The mechanisms for this change is lifecycle software maintenance activities.
Hence, we also examine existing models identifying drivers of software maintenance or
software modifications. We start with the interface to the general competitive
environment and progress to the localized task environment interface with the
information system. We then examine the essential characteristics of information

systems to assess their influence on levels of lifecycle software volatility.

Competitive Environment Interface

All organizations exchange resources with their environments. Organizations
viewed as open systems participate in this exchange on a great many levels. More closed
organizations may only exchange output with the outside world. However, most
organizations operate as open systems and are viewed that way. As open systems,
organizations rely on surrounding environments for resources, including information
resources, needed to succeed (Scott, 1992). To maintain their productivity, organizations
must change to keep pace with the dynamic nature of their competitive environment
(Porter, 1980; Morgan, 1997; Highsmith, 2000). Organizations faced with dynamic
environments have an increased need for informational resources to meet competitive
challenges. These increased requirements can be met by increasing the internal resources
available. Resources required for survival are the most immediate and relevant focus for

organizations interfacing with their competitive environment (Dess and Beard, 1984).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

An organization's ability to compete in the business environment and obtain
needed resources can be crucial to organizational success. Size can be used as an
indicator of the demand for an organization's products and services. Size is a dimension
of organizational structure. Size indicates an organization's ability to compete against its
cohorts for outside resources. Size is a variable on the interface between an organization

and its environment. Size measures how much work an organization does (Scott, 1992).

Companies grow incrementally by building on their own success. Some large
changes in company size occur through merger and acquisition, or divestiture of smaller
companies or large company subdivisions. Any of these changes may affect information
requirements and necessitate information system modification. If a business is involved
in mergers and acquisitions, its information systems may need to be enhanced to provide
services for new functicnal areas and increased services for a larger and more diverse
constituency. These changes result in modification of information systems and increases
in software volatility. Thus, we state the following hypothesis:

HI: Increasing business size will increase software volatility, i.e. decrease
periodicity.

Task Environment Interface

Each organization faces a number of varied tasks for its survival and success.
Task environments are created to denote the parts of the organization relevant to, or
potentially relevant to, accomplishment of these tasks (Thompson, 1967). Information
systems are the tools organizations use to solve problems and accomplish necessary
tasks. Thus, changes in the task environment directly affect software volatility. Primary
characteristics of any task environment define the task and identify its domain. They

include problem complexity and the number and variety of its constituency. These

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

charactenistics are frequently reflected in the information systems created to support these

tasks, and in the processes used to develop and maintain those systems.

We capture differences in task domain by identifying the functional domain of
each information system. The relationship between an information system and its
organization is the primary task environment interface. This relationship is a system's
organizational role. This role can be described several ways. A system can be identified
by the functional business area it supports, e.g. human resources, operations, etc. The
timing and quantity of changes in different business areas will be reflected in the
volatility of systems supporting those functions. There are a number of ways to describe
different functional roles performed by information systems. A system may serve a
technical core function or a boundary-spanning function (Thompson, 1967; Scott, 1992),
and there are different demands for the content and timeliness of information provided by
boundary-spanners and non-boundary-spanners (Aldrich and Herker, 1977). Boundary-
spanning information systems create and distribute information for users inside and
outside an organization. Boundary-spanning information systems need to respond more
often and more quickly to changes in an organization's external environment and produce
new and different types of information as it become available. These systems may create
annual financial reports for stockholders, monthly statements and special sales flyers for
customers and online Just-In-Time delivery and inventory information for suppliers.
Non-boundary-spanning information systems create information to be used within the
organization, e.g. an organization's payroll system.

Information systems can also be used to provide buffers between external

competitive forces and internal resources by influencing demand, leveling supply and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

demand of resources and product, forecasting and adjusting activities, and aiding with the

organization's technical core (Scott, 1992).

Whether we examine the specific business area a system supports, the extent to
which a system serves in a boundary-spanning capacity, or the strategic goal it facilitates,
we are assessing the role the information system plays in its organization. Information
systems spanning the boundary between one group and another, either within an
organization or between an organization and the outside world, must be flexible and
changeable to accommodate all stakeholders. Thus, boundary-spanning functional roles
promote more volatility in the information systems supporting them. We formally state
the following hypothesis:

H2: Information systems with boundary-spanning roles will have higher

software volatility relative to those with non-boundary spanning
roles, i.e. decreased periodicity relative to those systems with non-
boundary-spanning roles.

A number of studies have analyzed task team and task processes as dimensions of
task environment volatility because they serve as dynamic elements of the task
environment interface (Dess and Beard, 1984). Both the maintenance team and the

processes used to develop and maintain information systems serve as mechanisms for

changing software.

Prior research on software maintenance and software evolution has shown that
team factors significantly influence software maintenance processes (Perry, 1994,
Slaughter, 1995; Dekleva, 1992; Kemerer, 1995). We theorize that team factors also
affect software volatility. No one is as knowledgeable about source code as is the source
code author (Sacks, 1994). When other programmers try to modify source code, they

often have difficulty because they are less familiar with code written by someone else.

4-12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Thus, changes in programmer-program assignments can result in increased errors and
unnecessary modifications. Programmers unfamiliar with source code are likely to
change the code more often, change more code than necessary, and change more
programs than needed. If maintenance team members are uninformed of concurrent
maintenance activities, software modifications may need to be rewritten and re-tested,
forcing increases in software volatility. This maintenance team instability, i.e. changes in
assignments and membership of the maintenance team supporting a system, can increase
software volatility. The following hypothesis results:

H3: Increased maintenance team instability will increase software
volatility, i.e. decrease periodicity.

Task processes and procedures represent the standard operating procedures and
processes used by an organization to accomplish specific tasks. We concentrate on those
processes in the task environment relating to development and maintenance of

information systems.

Software development practices have been shown to affect the levels of software
volatility and lifecycle software maintenance (Lientz and Swanson, 1980; Banker and
Slaughter, 2000; Heales, 2000). To begin examining differences in development
processes we ask who developed the system. Software is often purchased from
outsourcers because managers believe the organization lacks necessary in-house
resources to create a reliable and efficient system (Lacity and Hirschheim, 1993;
Kirkpatrick and van Scoy, 1993). Purchased packages are often assumed to require less
lifecycle maintenance and expected to have reduced levels of software volatility. Under
contractual agreement, the vendor often restricts maintenance of purchased software

packages. Source code may be available for modification only to vendor personnel. In

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

addition, many purchased information systems have lifecycle maintenance scheduled and
controlled by the vendors. Outsourcers control lifecycle maintenance activities for
purchased packages by scheduling modifications less frequently for large portions of the
system, and install new versions of many system programs at the same time resulting in
decreased software volatility, i.e. increased periodicity. This leads us to the following
hypothesis:

H4: Purchased packages have decreased software volatility, i.e. increased
periodicity.

Structured development practices encourage the design of structured systems.
Computer-Assisted System Engineering (CASE) tools reinforce the use of structured
system design and controlled development methodologies (Low and Leenanuraksa,
1999). CASE tool proponents emphasize the time and effort saved by software
developers and maintainers in dealing with source code (Martin, 1989). These tools
make it possible to reduce maintenance effort even while increasing the changes
occurring in the source code. CASE tools encourage re-engineering and replacing source
code rather than maintenance of existing code (Martin, 1989). CASE tools are used to
help implement a single design philosophy in an organization throughout its many
projects and information systems. CASE tools improve system documentation by
facilitating the creation and revision of complete current system documentation (Hoffer,
George and Valacich, 1996). Thus, CASE tools facilitate software maintenance
processes. Availability of CASE tools promotes change because the tools make it
relatively easy to change the software. This will tend to make software modifications

more frequent and decrease periodicity. Therefore, we assert that use of CASE tools will

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

increase software modifications and software volatility, as measured by decreased
periodicity.

H3: Increased use of CASE tools increases software volatility, i.e.
decreases periodicity.

Lifecycle maintenance represents the largest force driving software modification.
As much as 80% of the effort spent on information systems is expended during post-
implementation lifecycle maintenance. The historical pattern of these incremental
software changes can be used to describe a software change process composed of a
variety of maintenance activities. Differences in patterns of these activities distinguish
lifecycle maintenance processes used from one system to another. We refer to these
historical patterns as lifecycle maintenance profiles. Prior research has shown that
lifecycle maintenance profiles may vary widely from one information system to another,
even among systems within the same organization. Research on software process
volatility has shown the significance of prior modification profiles (Heales, 2000). For
some systems empirical tests have demonstrated the significant contribution these
profiles make in predicting software processing errors (Barry, Kemerer and Slaughter,
1999). Software changes accomplished through addition, change or deletion of source
code will all result in some level of software faults (Malaiya and Denton, 1999). These
software faults will require correction, precipitating software modification and increasing
software volatility. Hence, we assert that lifecycle maintenance profiles are significant
drivers in a generalized predictive model of software volatility. Thus, we state the
following hypothesis:

H6: Increases in lifecycle maintenance profiles will increase software
volatility, i.e. decrease periodicity.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Basic System Characteristics

Basic system characteristics are those attributes used to describe the essence of an
information system. If we look at the interface of an information system and its
environment, we ultimately view the inner core, i.c. the inner environment, as the

substance and organization of the system itself (Simon, 1994).

Information systems are among the most complex and abstract of any artifacts
humans have created (Simon, 1994; Brooks, 1995). Basic system characteristics are
inextricably linked to the characteristics of the tasks they address. An information system
is an abstract construct of interlocking concepts representing data sets and relationships.
The inherent properties of information systems are often reduced to measures of their

complexity, size and age (Brooks, 1995).

Previous research on software volatility has identified some software
characteristics relating to the volatility of software products, including structure and
complexity (Banker and Slaughter, 2000). Software complexity is a basic software
product characteristic. Software complexity has been linked to software product
volatility (Yau and Collofello, 1980; Banker and Slaughter, 2000). Increases in software
complexity are also associated with increased levels of software maintenance (Banker, et
al., 1997). We recognize the complexity of an information system is a mixture of task
complexity and the complexity of its implemented solution. Total complexity is a basic
description of the system we analyze (Wood, 1986; Banker, Davis and Slaughter, 1998).
Thus, increases in software complexity will increase necessary software maintenance
and, in turn, increase software volatility, i.e. decrease periodicity. We formally state the

following hypothesis:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

H7: Increased software complexity will increase software volatility, i.e.
decrease periodicity.

Software size is also significant in predicting occurrence of software faults and
software modifications (Kemerer, 1995; Banker, Datar, Kemerer, and Zweig, 1993).
Larger programs and systems contain larger numbers of faults and require more
modifications to correct those faults. System age is another basic system characteristic.
Lehman et al. (1997) state three laws of software evolution describing system changes
related to software aging.' Work on software process volatility has also identified the
significance of software size and age (Heales, 2000). Analyses of software evolutionary
processes imply that software volatility increases with age. As information systems age
we expect an increasing divergence between them and their environments. Resolution of
these discrepancies requires software modification resulting in increased software
volatility. System size and system age are exogenous variables included as control

variables in our predictive models of software volatility.

Qur seven hypotheses are summarized in Table 1. Directional relationships

specified in hypotheses H1 through H7 are diagrammed in Figure 2.

! These are the Law of Continuous Change (the 1* law), the Law of Increasing Entropy (the 2* law), and
the Law of Continuing Growth (the 6™ law) (Belady and Lehman 1985).

4-17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The model for software volatility, , we will be empirically testing is:

7
V=ﬂ0+2(ﬂ,X,)+£

tw=l

Where

P constant term

B X; = coefficient and explanatory variable for business size (as in H1)

B2 X = coefficient and explanatory variable for role (as in H2)

B3 X3 = coefficient and explanatory variable for maintenance team
instability (as in H3)

P: X;= coefficient and explanatory variable for purchased packages (as in
H4)

Ps Xs = coeflicient and explanatory variable for CASE tool use (as in HS)

Ps Xs = coefficient and explanatory variable for maintenance profiles (as in

H6)
B X7 = coefficient and explanatory variable for complexity (as in H7)
& = error term.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

business size (t-1)

maintenance team instabiity (t-1)

Purchased
Package

' CASE tool use (1)

Wecycie maintenance profiie (t-1)

systam size (t-1)

* Systen age is wsed to normalize periodicity

Figure 2: Predictive Model for Periodicity

METHODOLOGY

Research Site

The research site is a publicly owned mid-Western retailer with a portfolio of 23
information systems, including 3500+ software programs. This portfolio supports work
for human resources, fiscal, operations and merchandising business functions. The
company supports this large and varied software portfolio with its centralized
Information Systems (IS) department. The IS department has separate development and

maintenance units.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Data

During the software portfolio’s 20-year history, the IS department maintained a
detailed log of every modification made to each program, providing researchers with
detailed information about 25000+ individual change events, i.e. any software
modification for correction, adaptation, enhancement or creation of new programs

(Kemerer and Slaughter, 1999).

Other available system characteristics include counts of programs, paragraphs,
lines of code and each of Halstead’s primitive measures (Conte, Dunsmore and Shen,
1986). Each program is flagged to indicate that CASE tools were used during its
development or maintenance support. A binary variable indicates systems purchased as
software packages. The indicator was set by detecting a vendor's name as the source

code author.

Measures

Operational definitions for the model's dependent and explanatory variables are
listed in Table 2. Each variable is measured for each month of the productive life span of

each information system.

The dependent variable periodicity is measured as the system-wide average time
interval between software modifications, relative to system age. Periodicity is calculated
monthly to allow analysis of variation in software volatility throughout the productive
lifecycle of an information system. We measure periodicity relative to system age to

“ allow analysis across systems and throughout a system's lifecycle.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Explanatory variables in our predictive model of software volatility are grouped
in three categories: (1) attributes of the competitive environment interface, (2) attributes

of the task environment interface, and (3) basic system characteristics.

(1) Attributes of the Competitive Environment Interface: A company can adjust to
changes in the competitive environment through growth, mergers and acquisitions, and
divestiture of subdivisions. Changes in Business Size can be used to indicate these
changes. We use annual revenue as a measure of business size>. Annual revenue is
adjusted by the consumer price index (CPI) to correct for general economic conditions

over the span of this longitudinal study.’

(2) Attributes of the Task Environment Interface: A number of attributes can be
used to describe the task environment interface. The role an information system plays in
an organization can be associated with the functional domain of the information system.
Aldrich and Herker (1977) discuss the tension when acting as liason between groups
from inside and outside an organization. They show that people and systems functioning
in boundary-spanning roles face increased volatility in information requirements. This
led us to hypothesize that information systems fulfilling boundary-spanning roles will
have increased levels of software volatility. We operationalize these roles with dummy
variables to indicate information system ownership by different functional areas of the
company: human resources, operations, merchandising and fiscal. These functions each
respond to the information needs of a different constituency. The human resources

function serves internal stakeholders and would need information processing for such

? Annual revenue was obtained from each year of this publicly-owned company's annual report to
stockholders.

4-21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

things as payroll and benefits. We would expect information systems supporting the
human resources function to facilitate internal information requirements and be a non-
boundary-spanning function. In contrast, information requirements for the fiscal area
would be set by a large and widely diverse group of stakeholders. Fiscal systems are
required to produce specialized accounts payable systems and reports for the annual
report of stockholders. We expect these information systems to support a boundary-
spanning function. We use a fixed-effects model in our parameter estimates to

distinguish the functional domain for information systems in the portfolio.

The composition of an organization's software maintenance team can be used to
describe maintenance team instability. The detailed information in the maintenance logs
for the organization's portfolio allows us to count the number of times lifecycle
maintenance activities are completed by a programmer different from the programmer
previously assigned to support that program. A count of these programmer swaps is
used as the operational variable to describing maintenance team instability. This variable
is aggregated at the system level by summation of the programmer swaps for each

program in the system, for each month in the system life span.

A simple binary variable is used to identify which systems were purchased
software packages. This will indicate those information systems where the development

process was outsourced.

Development and maintenance processes are also described by the use of CASE

tools in an information system. Each program in our portfolio was marked as using, or

* All financial data adjusted by CPI reported by U.S. government and reported in the 1999 World Almanac
and Book of Facts, p. 111.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

not using, a commercial CASE tool during development and maintenance. System
CASE-tool-use is aggregated as the monthly count of programs in a system developed or
maintained by CASE tools divided by the number of programs in the system, i.e. the
portion of each system's programs using CASE tools. This calculation allows CASE-
tool-use to vary from system to system and throughout the productive life span of

individual systems.

Maintenance processes are described by software maintenance profiles.
Historical patterns of lifecycle software maintenance activities are classified by
motivation for the modifications: corrective, adaptive, enhancement and new program
creation. These variables were operationalized for our empirical tests by calculating the
proportionate mix of corrective, adaptive, enhancement and new program creations for

each month in each system's life span.

(3) Basic System Characteristics: Three essential characteristics of information
systems are complexity, size and age. Software complexity can be broken down as
component, coordinative and dynamic complexity (Wood, 1986; Banker, Davis and
Slaughter, 1998). We use the following software product metrics for these complexities
and normalize them by system size, i.e. total lines of code (LOC). Component
complexity is operationalized as normalized system total unique operands, i.e. Halstead's
n2/(LOC). Coordinative complexity is operationalized using normalized system total
McCabe's cyclomatics, i.e. total cyclomatics/(LOC). Dynamic complexity is
operationalized as normalized program calls, i.e. total calls/(LOC).

The operational measure of periodicity is normalized relative to system age.

Therefore, we do not include system age as a separate explanatory variable in our

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

predictive model. The control variable for system size is operationalized as current total

LOC.
Construct Operational Description Unit Of Analysis
Variable Varies...
Hl Business size Annual revenue Company's total annual revenue By year
adjusted by CP!
H2 Organizational 4-way fixed effects dummy variables to indicate one of By system
role for business area 4 business areas: human resources,
supported fiscal, operations, merchandising
H3 Maintenance Programmer swap Count of each program modification By system by month
team count completed by someone other than
instability the previous programmer to
maintain that program
H4 Purchased Package Binary variable By system
software | = purchased package
package 0 = not purchased
HS CASE tool CASE tool use System-wide average of CASE- By system by month
development tool-use indicators
H6 Maintenance Corrective mix portion of maintenance activities By system by month
profiles classified as corrective
Adaptive mix portion of maintenance activities
classified as adaptive
Enhancement mix portion of maintenance activities
classified as enhancement
New program mix Portion of activities classified as
new program creation
H?7 complexity Normalized System-wide count of Haistead's n2 By system by month
Component (unique operands) normalized by
complexity system size
Normalized System-wide count of McCabe's
coordinative cyclomatics normalized by system
complexity size
Normalized System-wide count of program calls
dynamic normalized by system size
complexity
System size Total LOC Control variable - current total lines By system by month

of code in system

Table 1: Antecedents of Software Volatility

Our data set was built using the variables in Table 1 for the full productive

lifecycle of the 23 information systems in the company's portfolio. Data collection

started for each information system on the date of its initial implementation, and

continued until the end of the data collection period or until the system was no longer in

use, whichever came first. The result is an unbalanced panel data set containing 3201

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

observations. We include lagged explanatory variables, i.e. for time period -/, to
accommodate our model predicting software volatility, i.e. periodicity, in time period .

This slightly reduces our panel to 3178 observations.

RESULTS

Descriptive Statistics

Table 2 reports descriptive statistics for each of the operational variables used in
our predictive model. Table 3 reports the inter-correlations. In the software portfolio
there are four information systems for the human resources area, seven for operations,

two for merchandising and ten for the fiscal area. Four of the 23 systems in the software

portfolio are purchased packages.

Variable -all systems Mean Std. Dev. Min, Max.

3178 observations in 23 systems

Software volatility - periodicity 0.4826652 0.459903 0 1

Annual revenue 9487.367 3232.399 3443.309 14715.38

Programmer swap count 3.323474 6.278237 0 68

CASE-tool-use 0.1633094 0.2640052 O 1

Corrective mix 0.0674294 0.1577636 O 1

Adagtive mix 0.0407775 0.22653S 0 1

Enhancement mix 0.3510842 0.392479 0 1

New program crestion mix 0.1073055 _ 0.258088 0 1

Component complexity: n2 / lines of code 2188174 0608182 1191962 3940193

Coordinative complexity: McCabe's cyclomatics 58445 25487 337224 1938202

/ lines of code

Dynamic complexity: Calls / lines of code 0079633 0054584 0 0304348

Total LOC 188705.2 262514.7 187 1279163
__Swe (in months) 84.06671 59.31983 2 246

Table 2: Descriptive Statistics of Operational Variables

By definition and the construction of operational variables, there are upper and
lower bounds on each of the relative measures, i.e. periodicity and each of the mix
proportions. We note a relatively high correlation between CASE tool use and both
coordinative and component complexity, and among the three measures of compkexity.

We will expand our analysis of this after reviewing parameter estimate from regression

4-25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

results. We will clarify this further and eplain the implications later in the discussion

section.
p1 g3 BS 06(1) B6() BE(3) /W) BT(1) BT BYI)
annual revenue B1 1
programmer swap 02444 1
count §3
CASE-tool-use 8S 0.3387 0.3208 1
corrective mix B6(1) 02184 0.1017 0.2754 1
adaptive mix $6(2) 0.1419 0.3384 0.2584 0.0421 1
enhancement mix 04718 03707 04039 0.1079 0.1221 1
B&(3)
new program creation -0.0444 0.1033 0.0183 -0.0786 -0.0525 -0.1447 1
mix P6(4)
component complexity -0.3209 02380 -0.6043 -0.2363 -0.1474 -0.3342 -C.0521 1
BT(Y)
coordinative complexity -0.3272 -0.2354 -0.4401 -0.1815 -0.1434 -0.3318 -0.0380 0.5380 1
B7(2)
dynamic complexity 0.1405 0.1865 0.5752 0.1573 0.1078 0.2193 0.0128 -0.2752 -0.1887 1
B7(3)
Total LOC 0.4647 03738 0.7817 02688 02553 0.3816 0.0043 -0.5927 -0.3643 0.4190

Table 3: Correlations of Operational Variables

Parameter Estimates

A predictive model for periodicity was estimated using Generalized Least Squares
methods. As is often the case with panel data, i.e. pooled time series data, we found
evidence of serial correlation. A panel-specific correction for AR level serial
correlation was employed after the Breusch-Godfrey test confirmed autocorrelation
(Johnston, 1984). Separate regressions were run for each system's time series data.
These regressions reported a wide variation in Durbin-Watson statistics, indicating some
systems had strong serial correlation, and some were hardly affected. This indicated that
a panel specific correction would be more appropriate than using the same AR1
correction for the entire panel. This was confirmed by comparison of Wald statistics
from estimates using AR1 corrections against the Wald statistics from estimates using

panel specific AR1 corrections.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Estimated parameters for our predictive model of periodicity are reported in Table
4 and results of hypothesis tests are reported in Table S. Empirical tests support all but
one of our hypotheses. Residuals were examined for outliers by identifying observations
resulting in residuals more than three standard deviations from the mean residual (Neter,
Wasserman and Kutner, 1990; Belsley, Kuh and Welsch, 1980; Baroudi and Orlikowski,
1987). After removing 16 outliers, parameter estimates remained consistent with our

original results.

As hypothesized, we find that increases in business size, team instability and
lifecycle maintenance are associated with increased software volatility, i.e. decreased
periodicity.

The estimated coefficient for component complexity, i.e. [N2/system-total LOC]

has a sign opposite from that hypothesized (H7). We elaborate on this unexpected result

and provide a possible explanation in our discussion section.

Log likelihood = -667.5318 Wald = *** 2 p <0.001
N=3178 4866.67 ** 2n<0.05
Operational variable Estimated § p-value
Constant 0.9524293 0.000 b
Annual revenue (t-1) 0.0000229 0.000 bt
Business area ~ human resources -0.0456381 0.137

Business area ~ fiscal -0.0771880 0.006 sae
Business area ~ operations -0.0523706 0.031 b
Programmer swap count (t-1) -0.0070583 0.000 ses
Purchased package 0.1764679 0.000 see
CASE-use (1-1) -0.0954437 0.094
Corrective mix (t-1) -0.4380241 0.000 sse
Adaptive mix (t-1) -0.4148038 0.000 see
Enhancement mix (t-1) -0.4895813 0.000 e
New program creation mix (t-1) -0.4275023 0.000 sos
Component complexity: n2 / lines of code (t-1) 0.4609087 0.001 sos
Coordinative complexity: McCabe's cyclomatics / lines of code (t-1) 0.1815908 0.638

Dynamic complexity: Calls / lines of code (t-1) -1.5444250 0.305

Total LOC (t) -0.0000001 0.002 ses

Table 4: Regression Estimate for Drivers of Periodicity

4-27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Supported? Predicted Hypotheses concerning Competitive Environment Interface:
% 2 p <0.001 sign

** =p<0.05

Hl Yes b - Increasing business size will increase software volatility.

H2 Yes se - Information systems with boundary-spanning roles have
increased volatility, i.e. decreased periodicity, relative to those
with non-boundary-spanning roles.

H3 Yes b - Increased maintenance team instability will increase software
volatility.

H4 Yes ses + Purchased packages have decreased software volatility.

H5 - Increased use of CASE tools increases lifecycle software
volatility.

H6 Yes g - Increases in software maintenance profiles will decrease
periodicity.

H? No - Increased software complexity will decrease periodicity.

Table 5: Hypotheses test results

DISCUSSION
We built our conceptual models for drivers of software volatility based upon the

literature in software evolution and lifecycle software maintenance. We used a measure
of periodicity of lifecycle software maintenance activities as a measure of software
volatility. By emphasizing the close connection between information systems and their
environments, we built a predictive model for the antecedents of software volatility, i.e.
periodicity. Focusing on environmental influences, these antecedents are identified from
the dynamic attributes of interfaces between information systems and the competitive and
task environments. We also included attributes of the basic information system to
represent the core inner environment of all systems. Parameter estimates for our
predictive model of periodicity lend strong support to this approach. In the following

paragraphs we discuss the results for characteristics of each environmental level.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Competitive Environment Interface

Business size operationalized as annual revenue is negatively related to
periodicity of software volatility. Thus, growing businesses will face increased software
volatility and more frequent software modifications to their information systems
portfolio. This provides support for hypothesis 1. While perhaps intuitive, this result (1)
alerts managers to build this effect into their cost planning, and (2) allows us to interpret

the other effects in the model with greater confidence.

Task Environment Interface

We hypothesized that the organizational role influences the volatility of an
information system supporting that role (H2). The predictive model demonstrates the
significance of organizational role, i.e. functional domain, supported by each information
system. Information requirements for each information system vary according to the
tasks assigned. As a result, we expected information systems supporting boundary-
spanning activities to have higher levels of software volatility as compared to those
supporting non-boundary-spanning activities. Boundary-spanning activities share
information between organizations.

The organizational role of the information system is a significant driver in our
empirical model as indicated by the significance of the group of fixed-effects variables
designating business area (F = 24.398, p-value = 0.00) (Greene, 1997). The functional
domains supported by information systems in four business areas have distinctly different
levels of software volatility (F = 21.49173, p-value 0.00) (Greene, 1997). Using the

merchandising group as a reference group, we observe that the fiscal systems have the

4-29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

lowest periodicity and are, thus, the most volatile. This is as we expected for boundary-

spanning systems like the information systems supporting the fiscal domain.

As hypothesized, increases in maintenance team instability will increase software
volatility and decrease the time intervals between software modifications, i.e. decrease
periodicity (H3). Managers should be mindful of the effect of changing the programmer-
program assignments for lifecycle maintenance. Increased swapping of programmer
assignments will cause more software modifications than if the program's sequential
modifications are handled by the same programmer. The implicit knowledge
programmers collect as they familiarize themselves with a program and modify it is not
likely to be easily or completely transferred. If the program is assigned to a different
programmer each time modifications are required, each person must build their
knowledge of the program for each change. Unnecessary modifications may result as

newly assigned programmers familiarize themselves with the source code.

As expected, purchased software packages are modified less frequently and have
lower periodicity, than information systems developed in-house (H4). Even though these
results seem counter-intuitive, they are consistent with results in Banker and Slaughter
(2000), showing that the use of CASE tools promotes increased levels of software
volatility (HS). Dekleva (1992) describes use of CASE tools as one way to judge the
amount of structure in system design, associating strong structuring techniques with use
of CASE tools. Banker & Slaughter (2000) show that more highly structured systems
have higher levels of volatility, i.e. more modifications. The results we obtain
demonstrate a negative relationship between CASE tools and periodicity. our parameter

estimate, though marginally significant, indicates that CASE tool use results in more

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

frequent system modification, providing further support for the Banker and Slaughter
result. Thus, CASE tools increase software volatility. This seems counter-intuitive unti!
we remember that CASE tools were never designed to stabilize software, only to make it

easier and less time-consuming to change.

Increases in lifecycle maintenance profiles increase software volatility, i.e.
decrease periodicity (H6). We operationalized historical patterns of lifecycle maintenance
profiles with four variables representing the proportion of lifecycle maintenance activities
devoted to each motivating maintenance category: corrective, adaptive, enhancement and
new program creation, respectively. Their combined values indicate the presence, or
absence, of lifecycle maintenance activity in time ¢-/. We used historical patterns of
lifecycle maintenance activities, i.e. software maintenance profiles, for time ¢-/ to predict
software volatility. Our results indicate that lifecycle maintenance activity in time period

t-{ will increase software volatility during time period 1.

Basic System Characteristics

Prior research shows that increased software complexity will increase software
maintenance effort (Banker, Datar, Kemerer and Zweig, 1997). We hypothesized that
increased complexity will increase software changes, thus increasing software volatility
and decreasing periodicity (H7). Software complexity was operationalized three ways; as
component complexity, as coordinative complexity, and as dynamic complexity. This
reflects the types of cognitive complexity programmers face in creating task solutions
with their source code. Our parameter estimates yield a positive coefficient for
component complexity and insignificant coefficients for coordinative and dynamic

complexities.

4-31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Component complexity is measured as Halstead's n2 normalized by system total
LOC. Because Halstead's n2 counts unique data elements, high levels of component
complexity indicate information systems with relatively high levels of data-intensity.
There is research to indicate data intensive systems are more stable than those based on
process-driven models (Martin, 1989; Hoffer, George and Valacich, 1996). Our model

estimates for component complexity appear to support those findings.

Coordinative complexity and dynamic complexity measure the complexity of
decision branching in each program, and the call structure between programs within the
system, respectively. To make the inherent complexity of any task easier to deal with,
problem solvers often reduce complexity by breaking the task into smaller chunks
(Simon, 1994). By encouraging the creation of smaller, reusable programs, CASE tools
promote this same approach in re-engineering and maintaining software (Martin, 1989;
Low and Leenanuraksa, 1999). This change in design will also affect measures of

component and dynamic complexity.

CASE tools generate source code by using heuristics designed to create systems
with a large number of short reusable programs. These programs are accessed by
program calls. Thus, systems relying on CASE tools for source code generation will
have higher levels of dynamic complexity. CASE tools are used to generate programs
with simpler logic flow. These programs will have reduced coordinative complexity.
Once again, we note the relatively high correlation between the use of CASE tools and
measures of system complexity (corr(CASE-tool-use, component complexity) = -0.6943;
corr(CASE-tool-use, coordinative complexity) = -0.4401; corr(CASE-tool-use, dynamic

complexity) = 0.5752). Pair-wise correlations also indicate that systems with more

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

programs generated by CASE tools are larger and have, on average, larger programs
(corr(CASE-tool-use, system size) = 0.7786; corr(CASE-tool-use, average program size)
= 0.8394; corr(CASE-tool-use, programs in system) = 0.4115). These correlations lead
us to conclude that, in general, CASE tools generate systems with more programs of
smaller size. These programs have lower values of component and coordinative
complexity. They have higher complexity, i.e. they have increased levels of program
calls per LOC. By encouraging reuse of code, CASE tools generate programs to perform
generalized functions and use program calls to access those programs from other

programs in the system.

To check for the effects of multicollinearity among the measures of complexity
and CASE-tool-use, we re-estimated the model by omitting each of the four variables
individually. The results were consistent with those we obtained with the full model in

Table 4.

CONCLUDING REMARKS
This research contributes to the breadth and depth of our understanding of the

antecedents of software volatility. Our analysis indicates that dynamic attributes of the
environmental interfaces can be used to predict periodicity in software volatility. We
view an information system's environment as organized in successive layers, i.e. the
competitive environment, the task environment and the inner environment of the system
itself. We find that dynamic attributes describing an information system's interfaces to

each of these environments are significant drivers of software volatility.

Increasing business size can increase volatility by shortening the interval between

software modifications, i.e. decreasing periodicity. Increases in business size can

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

indicate the acquisition or creation of new business units. These additions will have new
or changed information requirements. In addition, constituencies for existing systems
may increase. The need to satisfy information requirements for additional users will

result in an increased need for software modifications and increases in software volatility.

When organizations are viewed as open systems, the boundaries between them
become difficult to identify. Depending on organizational structure, there are boundaries
within organizations, between sections, departments and divisions. Information is often
shared between subdivisions or departments, or between a company and its strategic
partners. In the aftermath of mergers and acquisitions, information systems that had
previously been viewed as non-boundary spanning may become boundary- spanning.
Recognition of the tie between software volatility and the functional domain it supports
can include the need for flexibility in supporting boundary-spanning activities at any
level of an organizational hierarchy. Use of fixed-effects variables for business area
classifications capture a number of differences in the volatility in task environments and
their association with information system behavior. A more detailed classification of the
task performed and its associated functional domain would provide researchers with a

greater understanding of this source of volatility.

Purchased software will be modified less frequently, i.e. software packages have
increasing periodicity. The decision to buy a software package is often based on an
expectation of improved software quality and less need for software maintenance. Our
findings appear to confirm this. Many software vendors control lifecycle maintenance by

grouping modifications and releasing sets of changes, or new system versions at one

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

time. This would resuit in lengthened intervals between modifications and increased
periodicity.

We speculate that CASE tool use may be interfering with the effect complexity
has on software volatility. The objective of CASE tools is to reduce the effort needed for
software development and modification. However, CASE tools generate larger systems
with more short programs. The individual programs are less complex, but have increase
levels of dynamic complexity, i.e. more program calls per LOC. CASE tools also
encourage re-engineering and regeneration of source code. Because CASE tools allow
code generation with relatively little programmer effort. Thus, CASE tools break the
connection between size and complexity of software and effort required to create and to
maintain that software. For the same reason, we believe the same interference is
affecting the results we obtain in examining the relationships between sofware volatility

and CASE tools.

We can use historical patterns of software maintenance activities, i.e. software
maintenance profiles, to predict software volatility. Our results indicate that lifecycle
maintenance activity in the previous time period will increase subsequent levels of

software volatility.

Increased component complexity, indicating data-intensive systems, will decrease
software volatility and increase periodicity. Systems with relatively high numbers of data

elements are likely to be relatively stable.

Implications for Future Research

This research expands our understanding of software evolutionary changes by

searching for drivers of software volatility, i.e. software change. By relating the time

4-35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

dimension of software volatility to the dynamic attributes of environments surrounding
an information system we have identified significant factors affecting software volatility,
i.e. periodicity. We learned that factors from each level of the general environment

contribute to software lifecycle changes.

In our discussions about software volatility we find it very easy to make implicit
assumptions about software volatility. Software volatility is often viewed as bad, or
something to be avoided. We don't really know this to be true. Future work should
examine the effect of software volatility on software maintenance outcomes. Researchers
should also examine the moderating effect of software volatility on the influence of other

factors in predicting lifecycle maintenance costs or processing errors.

Implications for Practice

We return to our original questions: "Why do we have to keep fixing this
software? Why can't you write a good system, so we don't need these constant changes?"
We often assume software volatility, i.e. software change, is bad, and should be avoided.
By recognizing the connection between information systems and their surrounding
environments, we see that change is often unavoidable. With the continued presence of
long-lived systems we understand that unchanging information systems can have
negative consequences. Consequently, practitioners should view software evolution and
software volatility as inevitable. Our identification of the drivers of software volatility
can help software managers by focusing attention on those drivers within a manager’s

control while anticipating resources needed for software lifecycle maintenance task.

This work has demonstrated the effects that managerial decisions concerning

software sourcing, CASE tool use and staffing assignments can have on software

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

volatility and system behavior. It is too easy to make the assumptions that all software
volatility is bad and immediately leads to increased maintenance costs. These valid
questions are beyond the scope of this work. However, the ability to anticipate levels of
software volatility will help managers become more proactive in dealing with lifecycle

software maintenance.

By measuring software volatility and identifying the factors driving volatility,
researchers and practitioners can all improve their understanding of the transformations
occurring during software evolution. Knowing which factors influence software
volatility, researchers and managers can focus on controllable factors to improve

management of software evolutionary processes.

REFERENCES

Aldrich, H. and D. Herker, "Boundary Spanning Roles and Organizational Structure”,
Academy of Management Review, Vol. 3, 1977.
Banker, R.D., S.M. Datar, C.F. Kemerer, and D. Zweig, November 1993, "Software

Complexity and Maintenance Costs”, Communications of the ACM, Vol. 36, No.
1,November, 1993, pp. 81-93.

Banker, R, G.B. Davis, and S.A. Slaughter, "Software Development Practices, Software
Complexity, and Software Maintenance Performance: A Field Study",

Management Science, Vol. 44, No. 4, Apr. 1998.
Banker, R.D,, and S.A. Slaughter, "The Moderating Effects of Structure on Volatility an

Complexity in Software Enhancement”, Information Systems Research, Vol. 11,
No. 3, Sept. 2000, pp. 219-240.

Baroudi, J.J., and W.J. Orlikowski, " The Problem of Statistical Power in MIS Research”,
MIS Quarterly, March, 1989, pp.87-105.

Barry, Evelyn J., Kemerer, Chris F., and Slaughter, Sandra A., "An Empirical Analysis of
Software Evolution Profiles and Outcomes”, Proceedings of the International
Conference on Information Systems, Charlotte, NC, December 1999.

Barry, Evelyn J., and Slaughter, Sandra A., "Measuring Software Volatility: A Multi-
Dimensional Approach” (extended abstract), Proceedings of the International
Conference on Information Systems, Brisbane, Australia, December 2000.

Belady, L.A. and M.M. Lehman, "A Model of Large Program Development”, IBM

Systems Journal, Vol. 3, 1976, pp. 225-252.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Belsley, D.A., E. Kuh, and R.E. Welsch, Regression Diagnostics: Identifying Influential
Data and Sources of Colliearity, John Wiley and Sons, New York, 1980.

Brooks, F.J., The Mythical Man-Month, Addison-Wesley Publishing Co. 1995.

Butcher, G., 1997, Addressing Software Volatility in the System Life Cycle, Ph.D.
Dissertation, Colorado Technical University, UMI#9815557.

Conte, S., H. Dunsmore, V. Shen, Software Engineering Metrics and Models,
Benjamin/Cummings, Menlo Park, CA, 1986.

Dekelva, S.M., "The Influence of the Information Systems Development Approach on
Maintenance", MIS Quarterly, 1992, pp. 355-372.

Davis, G.B., M.H. Olson, Management Information Systems: Conceptual Foundations,

Structure, and Development, 2™ Edition, McGraw-Hill Book Company, 1985.

Dess, G.G. and D.W. Beard, "Dimensions of Organizational Environments",
Administrative Science Quarterly, Vol. 29, 1984, pp. 52-73.

Gaither, N., Production And rations Management: A Problem-Solving and Decision-
Making Approach, 4™ Edition, The Dryden Press, 1990.

Greene, William H., Econometric Analysis, Third Edition, Prentice Hall, Upper Saddle
River, NJ, 1997.

Heales, J., "Factors Affecting Information Systems Volatility", Proceedings of the

International Conference on Information Systems 2000, Brisbane, Australia,
2000,

Highsmith, J.A_, III, Adaptive Software Development: A Collaborative Approach to
Managing Complex Systems, Dorset House Publishing, NY, 2000.

Hoffer, J.A., J.F. George, and J.S.Valacich, Modern Systems Analysis and Design, The
Benjamin/Cummings Publishing Company, Inc., Reading, MA, 1996.

Johnston, J., Econometric Methods, Third Edition, McGraw-Hill, Inc., New York, 1984.

Kalakota, R., and A.B. Whinston, Electronic Commerce: A Manager's Guide, Addison-
Wesley, Reading, MA, 1996.

Kemerer, C.F., "Software complexity and software maintenance: A survey of empirical
research”, Annals of Software Engineering, Vol. 1, Sept. 1995, pp. 1-22..

Kemerer, Chris F. and Slaughter, Sandra A., 1999, "An Empirical Approach to Studying

Software Evolution”, [EEE Transactions on Software Engineering, Vol. 25, No. 4,
1999, pp. 493-509.

Kirkpatrick, R.J., and R. Van Scoy, "Potential Risks to Software Development Projects
from the Use of COTS Components”, Proceedings of 5th Annual Software
Technology Conference, Salt Lake City, Utah, 1993.

Lacity, M.C. And R. Hirschheim, Information Systems Outsourcing: Myths. Metaphors
and Realities, John Wiley and Sons, New York, 1993.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lehman, M.M., "Human Thought and Action as an Ingredient of System Behavior”,

Encyclopedia of Ignorance, R. Duncan and M. W. Smith (Eds), Pergamon Press,
Oxford, 1977.

Lehman, M.M,, "Programs, Life Cycles and Laws of Software Evolution”, Proceeding of
IEEE Special Issue on Software Engineering, Vol. 68, No. 7, 1980, pp.1160-1176.

Lehman, M.M., "Programming Productivity - A Lifecycle Concept”, Proceeding
CompCon '81, 1981, pp. 232-241.

Lehman, M.M., "Program Evolution", Information Processing and Management, Vol. 20,
1984, pp.19-36.

Lehman, M.M., "Software's Future: Managing Evolution”, [EEE Software, 1998, pp. 40-
44

Lehman, M.M,, and L.A. Belady, Program Evolution: Processes of Software Change,
Academic Press, London, 1985.

Lehman, M.M., J.F. Ramil, P.D. Wemnick, D.E. Perry, and W.M. Turski, "Metrics and
Laws of Software Evolution - The Nineties View", Metrics '97. the Fourth

International Software Metrics Symposium, Albequerque, NM, 1997.
Li, W., L. Etzkorn, D. Davis, and J. Talburt, "An Empirical Study of Object-Oriented

System Evolution”, [nformation and Software Technology, Vol. 42, No. 6, 2000,
pp. 373-381.

Lientz, B.P,, and E.B. Swanson, Software Maintenance Management, Addison-Wesley,
Reading, MA, 1980.

Low, G., and V. Leenanuraksa, "Software Quality and CASE Tools", Proceedings of
Software Technology and Engineering Practice, STEP '99, Pittsburgh, PA, 1999,
pp. 142-150.

Lyu, M.R., Handbook of Software Reliability Engineering, [EEE Computer Society
Press, Los Alamitos, CA, 1996.

Malaiya, Y K., and J. Denton, "Requirements Volatility and Defect Density",
Proceedings 10th International Symposium on Software Reliability Engineering,
1999, pp. 285-94.

Marche, S., "Measuring the Stability of Data Models", European Journal of Information
Systems, Vol. 2, No. 1, 1993.

Martin, J., Information Engineering: Book [Introduction, Prentice Hall, Englewood
Cliffs, NJ, 1989.

Morgan, G., Images of Organization, Sage Publications, Thousand Oaks, CA, 1997.

Neter, J., W. Wasserman, and M.H. Kutner, Applied Liner Statistical Models Regression,

Analysis of Variance, and Experimental Design, 3™ Edition, Richard D. Irwin,
Inc., Burr Ridge, IL, 1990.

Perry, D.E., "Dimensions of Software Evolution”, [EEE Conference on Software
Maintenance, IEEE, 1994.

4-39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pfleeger, S., "The Nature of System Change", [EEE Software, Vol 15, No. 3,1998, pp.
87-90.

Porter, M.E., Competitive Strategy: Techniques for Analyzing Industries and
Competitors, The Free Press, New York, 1980.

Sacks, M., On the Job Learning in the Software Industry: Corporate Culture and the
Acquisition of Knowledge, Quorum Books, Westport, CT, 1994.

Scott, R.W., Organizations: Rational, Natural, and Open Systems 3™ Edition, Prentice
Hall, Englewood Cliffs, NJ, 1992.

Simon, H.A., The Sciences of the Artificial, The MIT Press, Cambridge, MA, 1994.

Slaughter. S.A.., Software Development Practices and Software Maintenance
Performance: A Field Study, Ph.D. Dissertation, University of Minnesota, 1995.

Thompson, J.D., Organizations in Action, New York, McGraw Hill Book Co., 1967.

Truex, D.P., R. Baskerville, and H. Klein, "Growing Systems in Emergent
Organizations", Communications of the ACM, Vol. 42, No. 8, 1998, pp. 117-123.

Wood, R.E., "Task Complexity: Definition of a Construct”, Organizational Behavior and
Human Decision Processes, Vol. 37, 1986, pp. 60-82.

Woodside, C.M., "A Mathematical Model For the Evolution of Software", Journal of
Systems and Software, Vol. 1, No. 4, 1980.

World Almanac and Book of Facts 1999, World Almanac Books, 1999, Mohawk, NJ,
111

Yau, S.S., and J. Collofello, "Some Stability Measures for Software Maintenance”, [EEE
Transactions on Software Engineering, Vol. 6, No 11,1980, pp. 545+.

Yau, S.S., and J. Collofello, "Design Stability Measures for Software Maintenance",
IEEE Transactions on Software Engineering, Vol.11, No. 9,1985, pp. 849-856.

Yau, S.S,, R.A. Nicholl, J.J. Tsai, and S.S. Liu, "An Integrated Life-Cycle Model for

Software Maintenance”, IEEE Transactions on Software Engineering, Vol. 14, No.
8, 1988, pp. 1128-1144.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER §:
RESEARCH QUESTION 3 -

CHARACTERISTICS OF SOFTWARE EVOLUTION AND LIFECYCLE
MAINTENANCE OUTCOMES

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

INTRODUCTION
Information systems (IS) managers universally cope with the task of lifecycle software

maintenance. Despite the importance of software maintenance, IS managers deal with
management of software maintenance in a predominantly reactive, rather than proactive, manner.
This is partially due to the difficulty in forecasting lifecycle maintenance outcomes and
predicting lifecycle maintenance resource requirements.

Many information systems serve their organizations for upwards of fifteen years
(Kalakota and Whinston, 1996) and outlive the tenure of the programmers and IS managers that
develop them (Swanson and Dans, 2000). To forecast lifecycle maintenance outcomes, IS
managers need to deal with currently implemented systems. The system characteristics and
management decisions from system development may no longer be available. Current legacy
systems may vary from those originally implemented. In fact, an information system may
change so much that original characteristics may no longer resemble the current system. Task
and organizational environments can change dramatically during the years an information system
is in productive use. Lifecycle maintenance processes are used to enhance information systems
allowing them to evolve in parallel to their surrounding environment (Pfleeger, 1998). We
recognize these life-long transformation processes as software evolution.

As Swanson and Dans recently observed, lifecycle maintenance activities are forward-
focused procedures striving to lengthen the productive life of an information system (Swanson
and Dans, 2000). Likewise, in this research we focus on prediction of lifecycle maintenance
outcomes to improve lifecycle maintenance management by enhancing predictive models of

maintenance outcomes, i.€. processing errors and maintenance costs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

By sustaining a forward perspective we use information about a current information
system and its recent changes. The objective of our research is to use basic characteristics of the
current system and characteristics of its recent software evolution to predict lifecycle
maintenance outcomes, i.e. software processing errors and lifecycle maintenance costs. What
effect does software evolution have on future maintenance costs? If two information systems are
described with identical size and complexity, should we expect them to have the same
maintenance costs and error rates? Do their different lifecycle maintenance histories, i.e. their
different patterns of software evolution, affect subsequent error rates and maintenance costs?

In this study we examine the relationship between software evolution as described by
and lifecycle maintenance outcomes. Software evolution is formally defined as the "dynamic
behavior of programming systems as they are maintained and enhanced over their life times”
(Belady and Lehman, 1976). We describe software evolution with two main characteristics, i.e.
lifecycle maintenance profiles and software volatility.

Maintenance profiles describe what type of lifecycle maintenance activities have
occurred, and software volatility describes when changes occur, how large they are, and how
consistently changes permeate the software system. Maintenance profiles are historical patterns
of software maintenance activities. The type of change motivation, i.e. corrective, adaptive,
enhancement and new program creation, categorizes these activities.

We describe software volatility as a muiti-dimensional phenomenon with attributes of
periodicity, amplitude and deviation. Periodicity tells us how often software changes. Amplitude
tells use how much software changes. Deviation indicates the relative variance in length of

change intervals for programs in the system.

5-2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Using the results of this study, researchers can observe the effect of software evolution on
lifecycle maintenance outcomes. IS Managers can apply these results to improve their budgets
for software maintenance resources. With an improved ability to predict software processing
errors and maintenance costs, IS managers can include anticipated system error rates when
looking at decisions concerning software system repair or replacement.

In the next section we combine the relevant literature on software maintenance outcomes
and software evolution to present eight hypotheses as a basis for our proposed model predicting
lifecycle maintenance .ouxcomes. Dependent and explanatory variables are operationalized, and
the model empirically tested using panel regressions. Separate panel regressions estimate model
parameters for prediction of maintenance costs and software processing errors. Our results
indicate that [S managers can use traditional software product attributes and descriptors of

lifecycle maintenance profiles and software volatility to predict software maintenance outcomes.

SOFTWARE MAINTENANCE OUTCOMES
Post-implementation lifecycle maintenance of information systems accounts for as much

as 80% of the lifetime costs of an information system (Bennet, 1996). For many organizations,
lifecycle maintenance activities consume more IS resources than new development (Swanson
and Dans, 2000). The resources expended in lifecycle maintenance can strain budgets and
prevent organizations from having the time and money needed for new software development.
When processing errors occur, managers frequently chase obscure, yet pressing problems with
few diagnostics describing the cause of those problems (Swanson and Beath, 1990). If software
managers could predict the frequency of production problems they will face, they could become

more proactive, and their ability to plan and manage their work would be greatly enhanced.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We examine existing models of software maintenance outcomes. These outcomes
include software processing errors and lifecycle maintenance costs. Each time maintenance
activities modify software there is a change in system processing that can lead to errors. We also
include costs, in dollars and in hours of effort. After examining current models of software
maintenance outcomes, we build our model based on basic characteristics of currently

implemented systems and elements of recent software evolutionary processes.

DRIVERS OF MAINTENANCE OUTCOMES
At any point in time an information system is the cumulation of an implemented

information system and post-implementation software evolution. We start by examining factors

that determine software product characteristics.

Basic System Characteristics
Brooks (1995) describes the basic characteristics of an information system as its

complexity, size and age. Complexity has been shown to be a significant factor contributing to
software maintenance outcomes. Increased complexity has been associated with increased
software errors, increased software faults and increased effort for lifecycle software maintenance
(Shen, et al., 1985; Banker, et al., 1991; Takahashi, 1997, Banker Davis and Slaughter, 1998;
Banker and Slaughter, 2000; Banker, et al., 2000; Graves, et al., 2000). Increased software
complexity is associated with programs that are more difficult to maintain and enhance. Extra
effort is required to understand what the program source code is intended to accomplish and why
it needs to be changed (Heales, 2000). Increased complexity makes it more difficult for
programmers to change existing code or add functionality without disturbing the logical flow of
processing in the original design. Thus, increased complexity will subsequently lead to an

increase in processing errors and increase maintenance costs because the result will be even more

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

complex programs that are difficult to maintain without causing errors. This leads to the

following hypothesis:

HI: Increased system complexity will increase software processing errors and lifecycle
maintenance costs.

System size and age are inherent attributes of an information system. These are both
system characteristics shown to relate to software processing errors and maintenance costs
(Lehman, et al., 1997, Davis and Olson, 1985; Graves, et al., 2000; Banker, et al., 2000; Heales,
2000; Eick, et al., 2001). We will use measures of software size and average program age as

control variables in this study.

Software Evolution
Software evolution is defined as the "dynamic behavior of programming systems as they

are maintained and enhanced over their life times" (Belady and Lehman, 1976). Software
evolution can be described by the accumulative effect of lifecycle maintenance activities on
information systems after their implementation. Lifecycle modifications are small incremental
changes that gradually transform a system. Rather than having the revolutionary impact of new
system implementation, these changes are evolutionary, gradually transforming information
systems to stay productive for the organization.

Software evolution has been studied from the general systems theory approach for several
decades, e.g. see Lehman and Belady, 1985, etc. Empirical research has led to a series of laws
describing behavior of information systems. Now we use characteristics of software evolution to
help with the IS management problem of predicting lifecycle maintenance outcomes. We
describe software evolution with two main characteristics, i.e. lifecycle maintenance profiles and

software volatility. Lifecycle maintenance profiles describe what types of changes are made to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the system and drive evolutionary processes. Software volatility measures the extent, timing and
predictability of those changes.

Basic system characternistics and software evolution are used as explanatory variables in
our conceptual model for software maintenance outcomes. Every information system is
subjected to software evolution to one degree or another. We use software volatility to describe
dynamic system behavior, and lifecycle maintenance profiles to describe maintenance processes

driving software evolution.

Lifecycle Maintenance Profiles

Past research has used information system histories and prior maintenance activities to
predict future levels of software maintenance costs and software faults or errors (Biyani and
Santhanam, 1998; Gefen and Schneberger, 1996; Lientz and Swanson, 1980; Banker, et al.,
2000; Banker and Slaughter, 2000). Similarly we seek a quantifiable descriptor of the type of
lifecycle maintenance work previously done to help anticipate future outcomes.

We use software maintenance profiles as attributes describing the processes driving the
transformations occurring as part of software evolution. These activities can be classified
according to their motivation: corrective, adaptive and enhancements (Lientz and Swanson,
1980). We can further classify maintenance activities by functional subcategories, i.e. data
handling, logic, computation, initialization, user interface and module interface (Barry, Kemerer
and Slaughter, 1999).

A number of researchers have presented taxonomies of lifecycle maintenance activities to
describe major types of maintenance work (Swanson and Beath, 1990; Lientz and Swanson,

1980; Pressman, 1992). IEEE standards have listed these as corrective, adaptive and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

enhancement. Some authors include categories for perfective and preventive maintenance
(Pressman, 1992). The empirical work that has been done tends to report most of the
maintenance effort as perfective (Lientz and Swanson, 1980, p. 68; Barry, Kemerer and
Slaughter, 1999).

To develop a taxonomy of lifecycle maintenance activities we examine the primary
motivations for software maintenance. Thus, we establish main activity categories corresponding
to the original classifications of corrective, adaptive and enhancement. We add a fourth main
category for new program creation.

Historical patterns of lifecycle maintenance activities are referred to as software
maintenance profiles. Each system has its own history and unique software maintenance profile.
We theorize that different types of maintenance activities will have different effects on future
software processing errors and maintenance costs. Based on software reliability models,
increased corrective activities should lead to reduced future levels of software processing errors
and thus, lower maintenance costs (Lyu, 1996). We state the following hypothesis:

H2: Increased corrective maintenance profiles will decrease software processing errors
and lifecycle maintenance costs.

Adaptive maintenance activities change software programs to conform to changes in their
surrounding environment. As opposed to enhancements, adaptive modifications add no new
functionality to an information system. These software modifications are only intended to
preserve the status quo. Continuing to operate a system after it no longer conforms to new
technological circumstances can cost an organization (Truex, Baskerville and Klein, 1998).

Even though an information system may continue to operate without processing errors,

additional expense may be encountered as additional software maintenance or manual processing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to compensate for a system that is not up-to-date. Thus, adaptive activities would eliminate the
need for this additional software maintenance or manual processing to cover the gap between an
old information system and the current business environment. Thus, we state the following
hypothesis:

H3: Increased adaptive maintenance profiles will decrease software processing errors
and lifecycle maintenance costs.

Enhancement activities change software programs by adding new functionality to an
information system. New program creations expand the functionality of a system by adding new
programs to a system. Changing and adding new source code to a system from enhancements or
new programs is likely to introduce software faults and result in increased processing errors for
later periods (Malaiya and Denton, 1999). Increases in processing errors will necessitate
software modiications to correct those newly introduced sofiware faults. We propose the
following hypotheses:

H4: Increased enhancement profiles will increase software processing errors and
lifecycle maintenance costs.

HS5: Increased new program creation maintenance profiles will increase software
processing errors and lifecycle maintenance costs.

Software Volatility

Software volatility describes dynamic behaviors by measuring software change. Software
volatility is a characteristic of the dynamic behavior of the programming systems as they evolve,
i.e. as they are maintained and enhanced throughout their productive life spans (Belady and
Lehman, 1976). This lifecycle software change is in many respects inevitable. It is necessary
for systems to keep pace with the changing environments surrounding them (Lehman and

Belady, 1985; Pfleeger, 1998). These evolutionary processes are important. Information

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

systems that fail these transformations can cause a drag on their organizations, resulting in a cost
of stability (Truex, Baskerville and Klein, 1998). We include software volatility in our model to
determine what its effect on maintenance outcomes.

Prior research has shown that software volatility affects software maintenance costs and
errors (Butcher, 1997; Banker and Slaughter, 2000; Yau and Collofello, 1980, 1985; Banker, et
al., 2000). Heales (2000) develops a software volatility index to measure effort spent on deep
structural changes during software change processes. Malaiya and Denton (1999) use analytical
methods to show that software change, i.e. volatility, results in increased levels of software
errors. Other researchers have used empirical studies to show that prior software changes result
in increased amounts of maintenance effort and software errors (Biyani and Santhanam, 1998;
Lientz and Swanson, 1980; Eick, et al., 2001; Banker, et al., 2000).

Software change or volatility is a multi-dimensional phenomena and it should be
described by a multidimensional measure to show how often software changes, how much it
changes and how predictably changes occur. Due to the close ties between information systems
and their environment we use multi-dimensional measures of software volatility based on a
multi-dimensional measure of environmental volatility developed by Wholey and Brittain
(1989). We describe software volatility with a multi-dimensional measure containing
periodicity, amplitude and deviation.

Periodicity describes how often information systems change. Amplitude describes how
much information systems change. Deviation describes how predictably the systems behave
(Barry, Kemerer and Slaughter, 2001). We define measures that can be calculated at each time

interval, e.g. week, month or quarter, during a system's post-implementation productive life span.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Thus, periodicity, amplitude and deviation can capture variations in lifecycle behavior of
information systems.

Periodicity describes time intervals between software modifications. This is the system-
wide mean of time intervals between software modifications for the time period being studied,
e.g. week or month. We measure periodicity relative to system age to allow analysis across
systems and throughout a system's lifecycle. Increased levels of software modification are
believed to lead to an increase in processing errors (Graves, et al., 2000). Increases in processing
errors will by necessity lead to increased maintenance costs in order to correct the cause of those
errors. As we analyze software volatility we note that decreasing periodicity indicates that
software modifications occur at more frequent intervals. We use periodicity at time -/ to predict
processing errors and maintenance costs at time /. Remembering that shortened intervals
between modifications indicates increased software volatility, we are led to the foliowing
hypothesis:

H6: Decreased periodicity will increase software processing errors and lifecycle
maintenance costs.

Amplitude describes the magnitude of change by measuring the total size of system
modifications each time period. We establish a relative system-level measure of amplitude as
the change in application system size and normglizing by total system size. Several size metrics
are available, including token counts of executable lines of code (LOC), function points, model
objects and entities (Bochm, 1984; Albrecht and Gaffney, 1983; Grady, 1987; Symons, 1988).
We use amplitude as a relative measure of how much software has changed. Increased
amplitude in time period ¢-/ is used to predict counts of processing errors and lifecycle

maintenance costs for time period #. More modifications, i.e. greater amplitude, in time period ¢-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

! leads to a greater likelihood of introduction of software errors, resulting in an increase in
software processing errors and subsequent maintenance costs for time period 1. This leads to the
following hypothesis:

H7: Increased amplitude will increase software processing errors and lifecycle
maintenance costs.

Deviation describes the variance of the time intervals between software modifications.
This measure indicates how consistent the change interval is for programs in an information
system. A high deviation indicates that the system has a few programs modified at short
intervals and some with very long intervals. A high deviation indicates that intervals between
software modifications vary widely across programs in the system. The behavior of the system
is harder to predict. Expertise needed for software changes will vary as well. This could lead to
an increase in mistakes while source code is changed, and unnecessary effort expended when
programmers try to support a larger subset of programs in the system. This could lead to
increased software processing errors and increased maintenance costs. Therefore, we pose the
following hypothesis:

H8: Increased deviation will increase software processing errors and lifecycle
maintenance costs.

Control Variables
Prior research indicates that as application software usage increases, so does the detection

of processing errors (Biyani and Santhanam, 1998; Yuen 1985; Dekleva, 1992). System usage
influences the number of software processing errors uncovered (Banker, et al., 2000). Software
that is not executed will not have any errors detected, nor will it require software maintenance.

Thus, we include application usage as a control variable.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Our eight hypotheses are summarized in Table 1. Directional relationships are
diagrammed in Figure 1. Our predictive model for software maintenance outcomes will be
empirically tested and results summarized in the next two sections.

< \
/ \

/ system size (t-1)

\

- T~
7 lifecycle ™

system age (t-1)
maintenance
\ / outcomes \
. -1 \
\ complexity (t-1) \
\ / software \
\sofmare product S processing \
~ __ error rate(t) |
~ T~ "
7 \ lifecycle /
/ maintenance maintenance /
/ profiles (t-1) costs(t) /
/
’ software volatility: 7/ /
-

\ periodicity (t-1)
amplitude (t-1)
\ | deviation (¢-1)

N\ sofiware evolution /
~ -

s

Qﬂeﬂl usa‘gg

Figure |: Model of Predictors of Maintenance Qutcomes

METHODOLOGY
To test the hypotheses in Table 1 we estimate the following models:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Error-rate, = By ~ Bi complexity,.; - B corrective profile..; ~ B; adaptive profile,.; ~
B enhancement profile.; ~ Bsnew program creation profile ..; ~ fs periodicity,.,
+ By amplitude,.; + Sy deviation,.; + By system size ~ &

Costs, = By ~ B complexity,; ~ B> corrective profile,.; - p; adaptive profile..; ~ fi
enhancement profile,.; - Bsnew program creation profile .., ~ fs periodicity,.; -
By amplitude,.; + fs deviation,.; ~ B system size ~ By application usage ~ &

Hypothesis Test

HI | Increased system complexity will increase software processing errors and lifecycie H1: §; >0
maintenance team costs.

H2 | Increased corrective maintenance profiles decrease software processing errors and lifecycle H2: B, <0
maintenance costs.

H3 | Increased adaptive maintenance profiles decrease software processing errors and lifecycle H3: ;<0
maintenance costs.

H4 | Increased enhancement profiles will increase software processing errors and lifecycle H4:B>0
maintenance costs.

HS | Increased new program creation profiles will increase software processing errors and lifecycle | HS: B, >0
maintenance costs.

H6 | Decreased periodicity will increase software processing errors and lifecycle maintenance costs. | Hé: fs <0

H7 | Increased amplitude will increase software processing errors and lifecycle maintenance costs. | H7: B, >0

H8 | Increased deviation will increase software processing errors and lifecycle maintenance costs. H8: >0

Table 1: Hypotheses to be tested

Research site:
The research site is a large national retailer with a software portfolio of 23 legacy systems

of 3500+ programs. The retailer has a large, centralized Information Systems (IS) department
that handles information processing for all of its various department stores. The Retailer’s IS
department has separate development and maintenance units. Software maintainers keep a
detailed log of every modification made to each module by recording implementation date,
purpose, type of change and programmer responsible.

Other available charactenistics of each program include measures of system size, age and
complexity. Application usage statistics include number and types of transactions processed
(online vs. batch). These factors are combined with outcome measures for processing errors and

maintenance costs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Measures
Operational definitions for each of the model's dependent and independent variables are

listed in Table 2. Our predictive model uses explanatory variables for time period ¢-/ to predict

outcomes in time period ¢.

Software Maintenance Qutcomes
Maintenance outcomes are measured as software processing error rates and maintenance

costs. Counts of software processing errors are token counts of abnormal terminations during
transaction processing, i.e. abends. We measure software processing error rate as the number of
abends per transaction processed (# abends / # transactions). Lifecycle maintenance costs are
measured as hours of effort expended for all lifecycle maintenance activities each quarter for

each system of the software portfolio.

Basic System Characteristics
We include software complexity as a key descriptor of a system. Because an information

system is conceived and created as a tool for problem solution, the complexity of a system
reflects the complexity of the task it addresses. Thus, descriptors of cognitive complexity
describe the complexity of a problem, as well as the complexity of its solution.

Cognitive complexity breaks system complexity into three types: coordinative,
component and dynamic complexity (Wood, 1986; Banker, Davis and Slaughter, 1998).
Coordinative complexity examines the logic flow within each program of the system.
Component complexity examines the data intensity of a system. Dynamic complexity
corresponds to the overall complexity of the entire system by measuring the linkages between

programs or elements in the system.

5-14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Coordinative complexity is operationalized as the system-wide total of cyclomatic
measures of logic flow complexity (Gill and Kemerer, 1991). We operationalize component
complexity as the system-wide number of unique operands in the system, i.e. Halstead's n2
summed over all programs in a system. Dynamic complexity is operationalized as the system-
wide total number of program calls. Each of the complexity measures is normalized with respect
to system size.

System size and age are control variables in our model. In addition, system size is used

to normalize complexity measures.

Lifecycle Maintenance Profiles
Lifecycle maintenance profiles summarize historical patterns of the types of lifecycle

maintenance activities that have occurred. We use four main activity categories relating to the
motivation for each system modification: corrective, adaptive, enhancement and new program
creation. Our empirical data provides a detailed log allowing classification of system
modifications. The centralized systems development and maintenance staff maintained in-house
standards requiring a record of who made the who made each software modification, when it was
implemented, what was modified and why. These maintenance logs were maintained in a special
section of the source code in each program throughout the software portfolio. System counts for
each category and subcategory are aggregated by system.

We operationalize lifecycle maintenance profiles to indicate the main type of activity
occurring in each system each time period. Once again, we use profiles from time period ¢-/ to
predict outcomes in time period ¢. To do this, we count activities for each main activity category,

and calculate the proportion of lifecycle maintenance activities for each category that time

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

period. We established four binary variables to indicate which main category of lifecycle
maintenance activity was predominant for each system in that pcriod.' For example, suppose
system XXX had ten system modifications this month. Five (50%) were enhancements, three
(30%) were new program creations, one (10%) was corrective and one (10%) was adaptive. We
set our four profile variables as follows:
Profile - corrective
Profile - adaptive
Profile - enhancement

Profile - new program creation
As with the other explanatory variables in our model, we use -/ profile values to predict

O — O O

maintenance outcomes in time period /.

Software Volatility
Software evolution is described by two attributes: software volatility and lifecycle

maintenance profiles. We describe software volatility with normalized measures of periodicity,
amplitude and deviation. Periodicity is operationalized as the mean time interval between
system modifications. Amplitude is the total change in system size normalized with respect to
total system size. Deviation is the variance in the lengths of time intervals between system
modifications. Periodicity and deviation are normalized with respect to system age.

Periodicity, amplitude and deviation are aggregate measures calculated for each time
period in our empirical data. Empirical data to predict maintenance costs are aggregated
quarterly. Tests of models predicting software processing errors are aggregated monthly. We use
values of periodicity, amplitude and deviation for time period ¢-/ to predict maintenance costs in

time period ¢.

! Ties are handled by assigning the value to the first non-zero proportion.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Construct Operational Description Unit of analysis
variable Varies ...
H1 | System Normalized System-wide count of Halstead's n2 (unique | By system by
complexity Component operands) normalized by system size quarter
complexity
Normalized System-wide count of McCabe's
coordinative cyclomatics normalized by system size
complexity
Normalized System-wide count of program calls
dynamic normalized by system size
complexity
H2 | Software Profile of main Binary variable to indicate this is most By system by
H3 | maintenance activity for prevaient type of lifecycle maimenance quarter
H4 | profiles software lifecycle | activity this quarter - there are four variables
HS maintenance for each of four main categories of
maintenance activities (corrective, adaptive,
enhancement, new program creation)
H6 | Software Periodicity Mean time interval between software By system by
volatility modifications normalized with respect to quarter
system age
H7 | Software Amplitude Change in system size normalized by By system by
volatility system size quarter
H8 | Software Deviation Variance in length of time intervals between | By system by
volatility software modifications normalized with quarter
respect to system age
Table 2: Operational Explanatory Variables
Data

The retailer’s software portfolio includes 23 applications, 21 with batch processing and 18
with online processing. A detailed log recorded all lifecycle maintenance activities in each of the
3500+ programs. Data include what modifications were made, who made them and when each
software modification was implemented. Quarterly data is available for maintenance costs,
maintenance effort, vendor costs, transactions processed online and batch, and processing errors
online and batch. Using these data a panel data set was built for the 23 applications covering 10
quarters. Two systems were not in production for the full 10 quarters. Missing values caused
some observations to have irreconcilable values. These records were dropped prior to regression

estimates. This leaves an unbalanced panel with 192 observations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Total monthly processing errors are available for each system for 31 months. Processing
errors, i.e. abends, are categorized separately for online and batch processes. Likewise, we tested
our model with separate regression estimates of online and batch abends using an unbalanced

panel data set with 688 observations.

RESULTS

Descriptive Statistics
Table 3 lists summary statistics for the monthly panel data set. Frequency counts for the

binary profile variables are listed in Table 4. Summary statistics for the relevant variables in the
quarterly panel data set are listed in Table 5. Table 6 lists frequency counts for the binary profile

variables in the quarterly panel data set. Correlations are listed in Tables 7 and 8.

Variable N Mean Std. Dev. Minimum Maximum
online transactions (t) 665 603136.8 972288 4 0 9167362
batch transactions (t) 665 764.7235 1073.836 0 7184.2
Total function points (t-1) 665 2364.647 1603.668 273 5482
Average program age (in months) 665 71.61239 48.63827 18.55263 230.5
Total Cyclomatics / total LOC (t-1) 665 0.0516164 O0.0110005 0.0353499 0.0810833
Total n2 / total LOC (t-1) 665 0.2013791 0.553793 0.1239131 0.3558856
Total calls / total LOC (1-1) 665 0.0082747 0.0048862 0.0008251 0.0156295
Software volatility - periodicity 665 0.265109 0.3805316 0 1
Software volatility - amplitude 665 0.0080517 0.042706 0 08145953
Software volatility - deviation 665 0.0076945 0.0194198 0 0.1994759

Table 3: Summary statistics of monthly panel data set

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Profile (t-1) N Freqq=0 Freaq=1 %=0 %=1
Profile - corrective 665 639 26 96.09 391
Profile - adaptive 665 655 10 98.50 1.50
Profile - enbancement 665 231 434 3474 65.26
Profile - new programs | 665 632 33 9504 496
Profile enhancement N Freq=0 Freq=1 %=0 %=1
subcategory (t-1)

Data handling 665 519 146 78.05 2195
Logic 665 415 250 62.41 37.59
Computation 665 662 3 9955 045
Initialization 665 662 3 99.55 04s
User interface 665 643 22 96.69 3.31
Module interface 665 665 0 100.00 0.00

Table 4: Frequency counts of Binary variables - monthly panel

Variable N Mean Std Dev. Minimum Maximum
Ln(lifecycle maintenance hours) (t) 180 4.756355 483937 -18.42068 7.907651
Ln(# batch transactions) (t) 194 4528112 7.755914 -18.42068 9.80713I
Ln(# online transactions) (1) 194 7.865331 12.35231 .18.42068 16.88541
Total function points (t-1) 194 2385.247 1657.912 273 5482
Average program age (in quarters) 199 3295181 18.29137 7.3333 72.5
Total Cyclomatics / total LOC (t-1) 194 0.0529539 0.010193 0.0386465 0.0810837
Total n2 / total LOC (t-1) 194 02042366 0.0542459 0.1388885 0.3558856
Total calls / total LOC (1-1) 194 0.0076707 0.0049431 0.0008251 0.0154845
Software volatility - periodicity 194 0.2048901 0.3086835 0.007 1
Software volatility - amplitude 194 00311604 0.0973654 0 0.8268304
Software volatility - deviation 194 0.0172412 0.0360195 0 03100103
Table 5: Summary statistics of quarterly panel data set

Profile (1) N Freq=0 Freq=1 %=0 %=1

Profile - corrective 194 187 7 9639 361

Profile - adaptive 194 192 2 9897 1.03

Profile - enhancement 194 36 158 1856 81.44

Profile - new programs 194 187 7 96.39 3.61

Profile enhancement N Freq=0 Freq=1 %=0 %=1|

subcategory (t-1)

Data handling 194 147 47 7571 2435

Logic 194 124 70 6392 36.08

Computation 194 187 7 9639 361

Initialization 194 190 4 9794 2.06

User imerface 194 188 6 9691 3.09

Madule interface 194 194 0 100.00 0.00

Table 6: Frequency counts of Binary Varnables - quarterly panel

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Monthly pane! data sct

Average program age (1-1)

Total cyclomatics / total LOC (-1}
Total 22 / total LOC (t-1)

Total calls / total LOC (2-1)

Profile - corrective (1-1)

Profile - adsptive (1-1)

Profile - enhancement (1-1}

Profile - new programs (1-1)
Software volatility - periodicity (t-1)
Software volatlity - amphitude (1-1)
Software volatility - deviation (1-1)

Table 7: Correlations for monthly panel data

Quarterly panel data set

online transac-tions (1)

Total finction potnts (1-1)

Average program age (t-1)

Towl cyclomatics / 10tat LOC @-1)
Total n2 / twal LOC (t-1)

Total calls / total LOC (1-1)

Profile - coerective (t-1)

Profile - adaptive (1-1)

Profile - enhancement (1-1)

Profile - new programs (1-1)
Software volatility - periodicity (t-1)
Software volatility - amplitude (t-1)
Software volatility - deviation (t-1)

-0.0637 -0.0465 0.0077 0.0841
<0.2164 0.0798 -0.06%4 -0.3055

Table 8: Correlations for quarterly panel data

wial Aver- Towl Toml Toal Pro- Pro- Pro- Pro- Soft- Soft-
m F;:‘;Yui“; "i; “&’J file- file- file- fiie- ware ware
(-1) mmage 1wl LOC LOC Comec adap- en- new volatil volatil
) LOoC @1 @I tive tivehance pro- ity- ity-
u-b (t-1) (t-1) -ment grams period amp-
(t-1) (@¢-1) icity litudc
(t-1) (1)
0.2104 |
0.1161 0.1917 1
0.2555 00311 0.6081 1
0.1110 0.2397 05571 Q.71 t
0.0324 -0.0049 00152 00324 00330 !
0.0243 4.0566 0.0467 0.0847 -0.0840 00257 !
Q0743 0.1654 0.1454 -0.2843 -0.3519 0.3519 0.2398 !
0.1441 0.1081 00573 -0.0632 -0.0427 0.0427 00291 0.3975 !
0.2521 £.1728 0.1207 04348 -0.0354 -0.0354 0.0071 0.5351 -0.1078 1
0.1128 0.0682 -0.0406 -0.0679 -0.0600 -0.0600 0.0170 0.1194 0.2579 £.1259 }
0.0810 -0.1314 -0.0073 -0.1492 -0.0368 -0.0368 0.}154 0.0823 -0.0128 00363 0.0264
#bach ¢ ol Ave- Toml! Tow! Toul Pro- Pro- Pro- Pro- Soft- Soft-
s oo v o T, 2] W) fle fle- fle- fie- ware ware
tons((-1) mmage toml LOC LOC coiTec adap- en- new volalil volatil
-y LOC @iy @y tive tivehance pro- ity- ity-
(G2Y) (t-1) (t-1) -ment grams period amp-
(t-1) (t-1) icity litude
(t-1) (1)
01770 1
02752 01508 |
05579 00702 02169 1
DNTS9 DO2IR N 296) NHORAR 1
NO04S 0121R N2306 00745 0 5468 1
00717 00557 02662 02382 0 SRNR D EI6R 1
1194 01248 003 D166 00622 00702 0.1728 1
0.0291 -0.0399 0.0814 0.0811 0.0655 -0.0746 0.0585 -0.0153 1
0.1689 0.1888 0.0839 02448 0.2773 0.0975 0.1706 -0.5685 -0.2112 !
<0.0820 0.0319 0.1001 0.0691 0.1018 -0.0T7T1 0.0521 0.0309 -0.0I15 -0.4260 I
€0.2127 0.1910 02171 -0.2992 0.3553 0.1806 -0.2665 -0.3%45 0.0585 0.6633 0.1020 1

00299 0.0349 0.0795 0.2936 -0.0229 02133 0.1597 0.2465 i
0.1507 0.0151 0.0489 0.0237 0.0840 0.0766 -0.0621 0.1065 0.0148

5-20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Parameter Estimates
Mode! parameters were estimated with generalized least square regressions for panel data

sets. Two separate regressions were estimated one using monthly data for predicting software
processing error rates, and one using quarterly data for predicting lifecycle maintenance costs.
As is common with pooled time-series data sets, autocorrelation was indicated by diagnostic
tests, i.e. the Breusch-Godfrey test for serial correlation (Johnston, 1984). To correct for this we
used panel-specific ARl methods for the correction of serial correlation. This provides separate
AR1 correction for each group in the panel, i.e. each system in the portfolio. The same
correction for serial correlation was used in both regression estimates.

Table 9 reports parameter estimates for software processing errors. There is no
commonly established functional form to describe the relationship between maintenance
outcomes and characteristics of software evolution and basic characteristics. A linear
transformation produced a better fit than either a semi-log or log-linear transformation. We

elaborate on our results in the discussion section.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Predict: processing error rate Estimated p-value | *** 2 p < 0.001 Hypothesis
N=522 coefficient ** 2p<0.05 tested /
Log likelihood = 2196.769 * 2ps<0.10 supported?
Wald =113.13
Constant 0.0126385 0.000 | ***
Total function points (t-1) -0.0000005 0.000 | ***

| Average program age (t-1) -0.0000161 0.002 | ***
Total cyclomatics (t-1) normalized by LOC -0.0761168 0.080 | * Hl no
Total n2 (t-1) normalized by LOC 0.0042215 0.543 H1
Total calls (t-1) normalized by LOC -0.3143885 0.000 | *** HIl no
Profile - corrective (t-1) <0.0030525 0.003 | *** H2 ves
Profile - adaptive (t-1) -0.0036036 0.005 { *** H3 yes
Profile - enhancement (1-1) -0.0029690 0.000 | *** H4 no
Profile - new program creation (1-1) -0.0045835 0.000 | *** HS no
Software volatility - periodicity (t-1) -0.0047772 0.000 | *** H6 yes
Software volatility - amplitude (t-1) 0.0452957 0.000 | *** H7 yes
Software volatility - deviation (t-1) 0.0030350 0.705 HS8
Table 9: Prediction of software processing error rate using monthly panel data
Predict: In(lifecycle maintenance hours) Estimated p-vaiue | *** = p < 0.001 Hypothesis
N=199 coefficient ** 2p<00S tested /
Log likelihood = -573.9624 * 2p<0.10 supported?
Wald = 85.91
Constant 25.8279400 0.000 | ***
Ut - transactions, batch (t) 0.0006823 0.153
Usage - transactions, online (t) -0.0000005 0.190
Total function points (t-1) 0.0000143 0.968
Average program age (t-1) 0.0533362 0.421
Total cyclomatics (t-1) normalized by LOC 170.6134000 0.027 | ** Hl yes
Total n2 (1-1) normalized by LOC -134.3394000 0.000 | *** Hl no
Total calls (t-1) normalized by LOC -1016.9020000 0.000 | *** Hl no
Profile - corrective (1-1) 2.1484380 0.281 H2
Profile - adaptive (t-1) -0.5163811 0.883 H3
Profile - enhancement (t-1) -1.1262410 0.496 H4
Profile - new program creation (1-1) 0.3682899 0.622 HS5
Software volatility - periodicity (t-1) -5.0545150 0.014 [** H6 yes
Software volatility - amplitude (t-1) 6.5823710 0.048 | ** H7 yes
Software volatility - deviation (t-1) 0.9321104 0.921 HS8

Table 10: Prediction of maintenance costs using quarterly panel data

The results of the regression estimates for maintenance costs are listed in Table 10. A

test for type of distribution function for maintenance costs showed they were not normally

5-22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

distributed.> A semi-log transformation was used for the cost panel regressions after
confirmation with the Box-Cox test for data transformation (Greene, 1997; Neter, Waserman and
Kutner, 1990). Our results support hypotheses H6 and H7, with mixed results for H1.

Inferences drawn from these results will be expanded in the discussion section.

DISCUSSION
The objective of this research is to determine if IS managers can use attributes of an

information system and its evolutionary record to forecast software maintenance outcomes, i.e.
maintenance costs and processing errors. By recognizing the progressive function of lifecycle
maintenance we focus our research on the attributes of an information system to see what we can
learn from aspects of the system's recent software evolution. We combine our understanding of
quantifiable characteristics of software evolution with basic system characteristics to build a
predictive model for lifecycle maintenance outcomes. This work examines the effect of these
explanatory variables with separate model regression estimates for software processing errors
and maintenance costs.

Explanatory variables chosen for our investigation represent information available to IS
managers charged with responsibility for system lifecycle support. An improved ability to
predict processing errors and maintenance costs can assist managers with resource planning, staff
assignments and cost controls. Enhanced predictions of costs and errors can increase an IS
manager's ability to make repair / replace decisions for information systems.

First, we examine the effect basic system characteristics have on software maintenance

outcomes. Tests of hypothesis H! indicate we can use some types of system complexity to

2Mnintemncecostsaremeasnredashoursot‘eﬁ'onspemonmaintenance.

5-23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

predict maintenance outcomes. We examine the effects of coordinative, component and

dynamic complexity as explanatory variables in our predictive model (Table 11).

Explanatory variable Efrors Costs
T Coordinative complexity = normalized cyclomatics $ T
T Component complexity = normalized n2 Ns ¢
% Dynamic complexity = normalized calls $ 3

Table 11: Effect of System Complexity on maintenance outcomes’
Component and dynamic complexities decrease costs and processing errors, while

coordinative complexity increases costs and processing errors. Systems with higher levels of
component complexity, i.e. normalized n2 = total n2/total LOC, are data intensive and, thus,
more stable than systems with lower levels of data intensity (Martin, 1989; Hoffer, George and
Valacich, 1996). These systems would have lower errors rates, require fewer modifications and
fixes, and be less expensive to maintain. Increased levels of dynamic complexity, i.e.
normalized calls = total calls/total LOC, indicate more structured system design with fewer
software faults and easier maintenance. Our results indicate that processing errors will decrease
and maintenance costs increase when there is an increase in coordinative complexity, i.e. when
normalized cyclomatics increases where normalized cyclomatics = total cyclomatics/total LOC.
Coordinative complexity places a higher burden on maintenance programmers. Modifications
take longer to implement and, therefore, result in higher costs. At the same time, it may be that
the increased time and care devoted to those modifications are completed with fewer errors.
Thus, we have mixed support for hypothesis H1.

Next we examine the effect software evolution can have on software maintenance
outcomes. Our model uses two main characteristics of software evolution: lifecycle maintenance

profiles and software volatility. We use lifecycle maintenance profiles to describe the type of

5-24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

activities occurring in software evolutionary processes. We analyze our results for hypotheses

H2 though HS in Table 12.
Expianatory variable Errors Costs
T Profile - corrective (t-1) { Ns
1 Profile - adaptive (t-1) $ Ns
1t Profile - enhancement (1-1) $ Ns
T ___Profile - new program creation (t-1) 3 Ns
Table 12: Effect of lifecycle maintenance profiles on maintenance outcomes

As expected, increases in corrective and adaptive maintenance activities will decrease
future processing errors. Hypothesis H2 and H3 for software processing errors are supported.
Hypothesis H4 predicts that increasing enhancements will increase both processing errors and
maintenance costs. Our results indicate that an increase in enhancements at time ¢-/ will result in
a reduction of processing errors at time ¢. Hypothesis HS predicts that an increase in new
program creations will increase both processing errors and maintenance costs. Our results
indicate that an increase in new program creations at time -/ will decrease processing errors at
time r. Our parameter estimates support hypotheses H2 and H3, and contradict hypotheses H4
and H5.

Software volatility is described with three dimensions, periodicity, amplitude and
deviation. Tests of hypotheses H6 through H8 will indicate whether we can use dimensions of
system volatility to predict lifecycle maintenance outcomes. As shown in Table 13, our results

provide support for hypotheses H6 and H7..

Explanatory Emors Costs

variable
T Periodicity { $
T Amplitude T T
1+ Deviation ns Ns

Table 13: Effect of software volatility on maintenance outcomes

3 Empty cells in tables 11-13 indicate estimated parameters were insignificant, i.e. p-value > 10%.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As expected, decreased periodicity will increase error rates and maintenance costs.
Decreasing periodicity indicates the software is more volatile, i.e. more software modifications
are occurring. More software modifications result in a higher likelihood of errors. Increases in
errors will require software maintenance for program fixes with an increase in maintenance
COsts.

Hypothesis H7 is supported by empirical results for both processing errors and
maintenance costs. Increasing amplitude, i.e. relative size of software change, will increase the
rate of occurrence of errors.

Four of eight hypotheses were supported, one had mixed support and two hypotheses

were contradicted. Table {4 summarizes test results for all eight hypotheses.

Hypo- Support?

thesis

H1 Mixed Increased system complexity will increase software processing errors and lifecycle
maintenance costs.

H2 Yes Increased corrective maintenance profiles decrease software processing errors and lifecycle
maintenance costs.

H3 Yes Increased adaptive maintenance profiles decrease software processing errors and lifecycle
maintenance costs.

H4 No Increased enhancement profiles will increase software processing errors and lifecycle
maintenance costs.

HS No Increased new program creation profiles will increase software processing errors and
lifecycle maintenance costs.

H6 Yes Decreased periodicity will increase software processing errors and lifecycle maintenance
costs.

H7 Yes Increased amplitude will increase software processing errors and lifecycle maintenance
COsts.

HS8 Decreased deviation will increase software processing errors and lifecycle maintenance
COStS.

Table 14: Summary of tests of hypotheses

CONCLUDING REMARKS

Change is inevitable. We recognize that to keep pace with changing requirements

information systems must also change and evolve. Slow incremental software transformations

5-26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

can be described by software evolution. Some authors equate software evolution to software
lifecycle maintenance.

We describe software evolution with software volatility and lifecycle maintenance
profiles. Lifecycle maintenance profiles describe what type of work is being done. Software
volatility measures how often modifications are made (periodicity), how much is modified
(amplitude), and how consistently programs are modified in a system (deviation). We use these
characteristics with the basic system characteristics of an information system to predict lifecycle

maintenance outcomes, i.€. maintenance costs and software processing errors.

Implications for research
Post-implementation software maintenance activities account for most of the total

lifetime costs of software systems as they continue to evolve. It is important to understand the
drivers of these maintenance outcomes and improve a manager's ability to control these costs. If
software evolution, i.e. software volatility and lifecycle maintenance profiles, affect maintenance
outcomes, IS managers need to know.

The objective of this research is to determine if software maintenance outcomes, i.e.
errors and costs, are driven by information system characteristics and descriptors of software
evolution. We developed a conceptual model based on eight hypotheses describing the
relationships among software maintenance outcomes and information system characteristics,
lifecycle maintenance profiles and software volatility.

Our analysis demonstrates that we can use our knowledge of system characteristics and

recent software evolution, to predict maintenance costs and processing errors

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Implications for practice
In discussions of software volatility we often assume that software volatility, i.e. software

change, is bad, should be prevented and that it leads to increased costs. We must be careful not
to jump to conclusions. Leaving information systems unchanged can actually cause problems if
they no longer satisfy the information requirements of their organizations. Another challenge for
IS managers is that information systems generally have a longer tenure than the programming
team assigned to maintain them. Traditional models explaining software maintenance costs and
forecasting processing errors use explanatory variables determined during system development
and implementation. IS managers must deal with the current information system. Choices about
buying off-the-shelf software, CASE tools and support team staffing may not even be available.
This work provides an IS manager with information about the relationships among the
current information system, its recent change history and future lifecycle maintenance outcomes,
i.e. maintenance costs and software processing errors. An understanding of the overall
evolutionary processes and their relationship with future maintenance costs and processing errors
can assist managers in forecasting software maintenance budgets and workload. Improvements
in the prediction of these outcomes will improve managers' abilities to make the repair / replace

decision when considering replacement of aging information systems with newer technologies.

Contributions :
This work extends our knowledge of the relationship between prior lifecycle maintenance

activities and future maintenance outcomes. Researchers can use this as a motivation for further
work in describing and analyzing the type, sequence, quantity and timing of maintenance

activities.

5-28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

REFERENCES

Albrecht, A.J. and Gaftney, J.E. Jr., “Software Function, Source Lines of Code, and
Development Effort Prediction: A Software Science Validation”, [EEE Transactions on
Software Engineering, Vol. 9, No. 6, Nov. 1983, pp. 639-648.

Banker, R.D., Datar, S.M., Kemerer, C.F., and Zweig, D., "Software Complexity and
Maintenance Costs", Software Project Management: Readings and Cases, C.F. Kemerer,
(Ed.) Irwin Book Team, Chicago IL, 1997, pp. 521-538. .(reprinted from 1991)

Banker, R.D., Datar, S.M., Kemerer, C.F., and Zweig, D., "Software Errors and Software

Maintenance Management", Information Technology and Management, forthcoming,
2000.

Banker, R., Davis, G.B., and Slaughter, S.A., "Software Development Practices, Software
Complexity, and Software Maintenance Performance: A field study”, Management
Science, Vol. 44, No. 4, Apr. 1998.

Banker, R.D., and Slaughter, S.A., "The Moderating Effects of Structure on Volatility an

Complexity in Software Enhancement”, Information Systems Research, September 2000,
Vol. 11, No. 3, pp. 219-240.

Barry, E.J., Kemerer, C.F., and Slaughter, S.A., "An Empirical Analysis of Software Evolution
Profiles and Outcomes", Proceedings of the International Conference on Information
Systems, Charlotte, NC, December 1999.

Barry, E.J., Kemerer, C.F., and Slaughter, S.A., "A Multidmensional Measurement of Software
Volatility", CMU - GSIA, working paper, 2001.

Belady, L.A., and Lehman, M.M., A Model of Large Program Development”, [BM Systems
Journal, No, 3, 1976, pp. 225-252.

Bennet, K., "Software evolution: past, present and future", Information and Software
Technology, Vol. 39, No. 11, Nov. 1996, pp. 673-680.

Biyani, S., and Santhanam, P., Exploring defect data from develpment and customer usage on
software modules over multiple releases, Yorktown Heights, NY, IBM T. J. Watson
Research Center, 1998.

Boehm, B.W., "Software Engineering Economics”, Software Project Management: Readings and
Cases, C.F. Kemerer, (Ed.) Irwin Book Team, Chicago IL, 1997, pp. 55-85

Brooks, F.J., The Mvthical Man-Month, Addison-Wesley Publishing Co., 1995.

Butcher, G., Addressing Software Volatility in the System Life Cycle, PhD Dissertation,
Colorado Technical University, 1997, UMI#9815557.

Davis, G.B, and Olson, M.H., Management Information Systems: Conceptual Foundations,
Structure, and Development, 2™ Edition, McGraw-Hill Book Company, 1985.

Dekelva, S.M. "The Influence of the Information Systems Development Approach on
Maintenance”, MIS Quarterly, September 1992, pp. 355-372.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Eick, S.G., Graves, T.L., Karr, A K., Marron, J.S., and Mockus, A., "Does Code Decay?
Assessing the Evidence from Change Management Data ", IEEE Transactions on
Software Engineering, January 2001, Vol. 27, No. 1, pp. 1-12.

Grady, R.B., “Measuring and Management Software Maintenance”, [EEE Software, Vol. 4, Sept.
1987, pp. 3545.

Gefen, D., and Schneberger, S.L., "The Non-Homogeneous Maintenance Periods: A Case Study
of Software Modifications", Proceedings of the IEEE Conference on Software
Maintenance, 1996, Monterey, CA.

Gill, G.K., and Kemerer, C.F., "Cyclomatic Complexity Density and Software Maintenance

Productivity”, [EEE Transactions on Software Engineering, Vol. 17, No. 12, December,
1991, pp.1284-1288.

Graves, T.L., Karr, A.K., Marron, J.S., and Siy, H., "Predicting Fault Incidence Using Software
Change History", [EEE Transactions on Software Engineering, July 2000, Vol. 26, No. 7,

pp. 653-661.
Greene, Wm H., Econometric Analysis, third edition, Prentice Hall, Upper Saddle River, NJ,
1997.

Heales, J., "Factors Affecting Information Systems Volatility", [CIS 2000 Proceedings, Brisbane
, Australia, December 10-13, 2000, forthcoming.

Hoffer, J.A., J.F. George, and J.S. Valacich, 1996, Modern Systems Analysis and Design, The
Benjamin/Cummings Publishing Company, Inc., Reading, MA.
Johnston, J., Econometric Methods, Third Edition, McGraw-Hill, Inc., New York, 1984.

Kalakota, R., and Whinston A.B., Electronic Commerce: A Manager’s Guide, Addison-Wesley,
Reading, MA, 1996.

Kemerer, C.F. and Slaughter, S.A., "Methodologies for Performing Empirical Studies: Report
from the International Workshop on Empirical Studies of Software Maintenance”,
Empirical Software Engineering, Vol. 2, No. 2, 1997(1), pp. 109-118.

Kemerer, C.F. and Slaughter, S.A., "Determinants of Software Maintenance Profiles: An
Empirical Investigation”, Journal of Software Maintenance, Vol. 9, 1997(2), pp. 235-251.

Kemerer, C.F. and Slaughter, S.A., "A Longitudinal Analysis of Software Maintenance
Patterns”, ICIS 1997 Proceedings.

Lehman, M.M,, and Belady, L.A., Program Evolution: Processes of Software Change, Academic
Press, London, 198S.

Lehman, M.M., Ramil, J.F., Wemick, P.D., Perry, D.E. and Turski, W.M., "Metrics and Laws of
Software Evolution - The Nineties View", Metrics 97, the Fourth International Software
Metrics Symposium, 1997, Albequerque, NM.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Lientz, B.P., and Swanson, E.B., Software Maintenance Management, Addison-Wesley,
Reading, MA, 1980.

Lyu, M.R., Handbook of Software Reliability Engineering, IEEE computer Society Press, Los
Alamitos, CA, 1996.
Malaiya, Y K., and Denton, J., "Requirements Volatility and Defect Density”, Proceedings 10th

International Symposium on Software Reliability Engineering (Cat. No. PR0044), p.
xii+304, 285-94. ISBN 0760594434, [EEE Computer Society, Los Alamitos, CA

Martin, J., Information Engineering: Book I Introduction, Prentice Hall, Englewood Cliffs, NJ,
1989.

Neter, J., Wasserman, Wm, and Kutner, M.H., Applied Liner Statistical Models Regression,
Analysis of Variance, and Experimental Design, 3" Edition, Richard D. Irwin, Inc., Burr
Ridge, IL, 1990.

Pfleeger, S., "The Nature of System Change", [EEE Software, Vol. 15, No. 3, May-June 1998,
pp. 87-90.

Pressman, R.S., Software Engineering: A Practioner’s Approach, 3rd Edition, McGraw-
Hill,New York, NY, 1992.

Shen, V.Y, Yu, T.J., Thebaut, S., and Paulsen, L.R., “Identifying Error-Prone Software - An
Empirical Study”, IEEE Transactions on Software Engineering, Vol. SE-11, No. 4, April,
198S, pp. 317-323.

Swanson, E.B. and Beath, C.M., "Departmentalization in Software Development and
Maintenance”, Software Project Management: Readings and Cases, C.F. Kemerer, (Ed.)
[rwin Book Team, Chicago IL, 1997, pp. 539-553. (Reprinted from 1990)

Swanson, E. B,, and Dans, E., "System Life Expectancy and the Maintenance Effort: Exploring
their Equilibrium”, MIS Quarterly, June, 2000, Vol. 24, No. 2, pp. 277-297.

Symons, C.R., “Function Point Analysis: Difficulties and Improvements”, [EEE Transactions on
Software Engineering, Vol. 14, No. 1, Jan. 1988, pp. 2-11.

Takahashi, R., "Software Quality Classification Model Based on McCabe's Complexity
Measure", The Journal of Systems and Software, Vol. 38, No. 1, July 1997, pp. 61-69.

Truex, D.P., Baskerville, R. and Klein, H., "Growing Systems in Emergent Organizations",
Communications of the ACM, August 1998, Vol. 42, No. 8, pp. 117-123.

Wholey, D.R., and Brittain, J., "Characterizing Environmental Variation”, Academy of
Management Journal, Vol. 32, No. 4, 1989, pp. 867-882.

Wood, R.E., Task Complexity: Definition of the Construct”, Organizational Behavior and
Human Decision Processes, 1986, Vol. 37, pp. 60-82.

Yau, S.S., and Collofello, J., "Some Stability Measures for Software Maintenance”, IEEE
Transactions on Software Engineering, Vol. 6, No. 11, Nov. 1980, pp. 545+.

5-31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Yau, S.S., and Collofello, J., "Design Stability Measures for Software Maintenance”, IEEE
Transactions on Software Engineering, Vol. 11, No. 9, Sep. 1985, pp. 849-856.

Yuen, C.H., "An Empirical Approach to the Study of Errors in Large Software Under
Maintenance"”, 2nd IEEE Conference on Software Maintenance, 1985, Washington, D.C.

5-32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6: CONCLUSION

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CONTRIBUTIONS, IMPLICATIONS AND FUTURE WORK

Contributions and Implications
This thesis makes several contributions to our common understanding of software

evolution. This is the first study to measure and analyze differences in evolutionary
transformations of systems. Empirical studies of software evolution face particular
challenges due to the longitudinal nature of the evolution phenomenon. The results for
this study of software evolution are strengthened by use of a unique empirical data set
ten-times larger than previous longitudinal studies in this area. Prior research on software
evolution has concentrated on development and confirmation of laws of software
evolution. This research goes beyond the laws describing universal behavior of software
systems to build models for analyzing differences in system behavior, i.e. software
evolution.

This work provides a fresh approach for studying the evolutionary process of
software change. By defining and validating a multi-dimensional measure of software
volatility we can expand available methodologies. Studies of volatility from other
disciplines are compared and contrasted with software change processes. We define
software volatility as a multi-dimensional concept. Software volatility is described by
periodicity (change interval length), amplitude (change size), and deviation (change
interval predictability). Evaluation criteria are developed and rigorously applied to the
newly defined measures of periodicity, amplitude and deviation. Validity of these new
measures is tested empirically using a 20-year history of software modifications for
lifecycle maintenance in 23 information systems. The measures are found to have both
convergent and discriminant validity. Predictive validity is demonstrated with a model

for software complexity. We are able to empirically show that periodicity, amplitude and
6-1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

deviation are predictors of software complexity. Our empirical tests show that these
dimensions of software volatility are better predictors than traditional software product
metrics. Multi-dimensional measures of software volatility, i.e. amplitude, periodicity
and deviation, are relatively easy to calculate and can be aggregated to vary by system
and time period. These measures lend themselves to longitudinal studies necessary for
understanding the evolutionary processes taking place in software lifecycle maintenance.

The second research question addressed in this project is to identify antecedents
of software volatility. Recognizing the close tie between information systems and their
working environments, we examine attributes of the competitive environment, the task
environment, and the basic information system's inner environment to build a conceptual
model of antecedents for software volatility as measured by periodicity. We build a
conceptual model based on seven hypotheses. These hypotheses are empirically tested
using longitudinal data from a 20-year log of lifecycle maintenance activities for 23
information systems. We find that elements from each facet of an information system's
environment contribute significantly in determining levels of software volatility.

The third objective addressed in this research is to examine the relationship
between characteristics of software evolution and lifecycle maintenance outcomes as
measured by software processing error rates and lifecycle maintenance costs. Lifecycle
maintenance is motivated by a desire to extend the life of an existing information system.
To maintain this same progressive focus, we acknowledge that all prior development and
lifecycle maintenance work has created the currently implemented system. We ask if
attributes of an information system and its recent software evolution are determinants of

lifecycle maintenance outcomes. We build a conceptual model based on eight

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

hypotheses describing the relationships between maintenance outcomes, i.e. processing
errors and maintenance costs, and descriptors of recent software evolution and basic
information system characteristics. This theory is supported with empirical data for a
two-and-one-half-year history of lifecycle maintenance outcomes and lifecycle
maintenance activities for a portfolio of 23 information systems. By using three
dimensions of software volatility, and historical patterns of the types of lifecycle
maintenance activities recently executed, IS managers can gain significant insight into
future levels of processing errors and maintenance costs.

This research also makes practical contributions to the work faced by
practitioners. Combining the resuits obtained from each of the three research questions,
we provide [S managers with software volatility measures that can be calculated with a
basic spreadsheet application. By tracking the motivation of lifecycle maintenance
activities and the timing and size of software modifications implemented, IS managers
can gain insight into system behavior. These insights will help in anticipating resource
requirements for lifecycle maintenance support. In addition, the use of current system
characteristics and recent software evolutionary processes to predict lifecycle
maintenance outcomes, can expand the tools available for assisting with managerial
decisions to repair or replace an information system. Contributions of this research
project are summarized in Table 1.

This research presented a number of challenges that allow it to make substantial
contributions to the understanding of software volatility and its relationship to the
evolutionary process of continuous change. First, we defined and measured software

volatility. Most prior discussions of software volatility have used counts of modifications

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to describe the volatility of programs and systems. We define, evaluate and validate a
three-dimensional volatility measure to track software evolution during the full lifecycle
of an information system.

A study of software volatility is also particularly challenging because little theory
has been developed to guide our investigation. This work is a unique opportunity to use a
particularly large data set to gain insight into incremental changes occurring in
information systems as they age. This work began with an inductive approach. We
adapted measures and concepts from research in other areas. Research from the fields of
economics, manufacturing processes and software reliability was useful. Once software
volatility was defined, this new quantitative measure was used to identify factors
contributing to software volatility. Software volatility as a characteristic of recent

software evolution was used to model determinants of software maintenance outcomes.

Future Work

The study of software evolution and the management of evolutionary processes
fall in the intersection of software engineering and project management. Analyses in
these fields must recognize information systems as the economic output of software
producing organizations. The unique characteristics of software as a product, and the
unique resources required for its creation, present researchers and practitioners with a
number of interesting problems. Our recognition of the longevity of information systems
and their constant modification dictates that research in these areas maintain a
longitudinal perspective. The study of software evolution is the study of change. With

expanded understanding of change processes, we can deal with questions of how and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

when to prepare for change, what types of systems change the most, and how these
changes can be dealt with in the most effective and efficient manner. Now that we have a
more fully descriptive measurement of software volatility, and methods for analyzing
lifecycle maintenance patterns, we can build our understanding of software evolution and
its effect on information systems. Both IS researchers and IS practitioners must
recognize that software changes and evolves as it ages. Software evolutionary processes
are neither good nor bad, but they are inevitable. With the ability to measure this

volatility, we can understand what causes change, and anticipate the consequences.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Research Question 1:

Topic

Rescarch Question 2;
n ilit

Research Question 3;
Characteristics of Software Evolution

Multi-dimensional system-level measure of
software volatility

e Periadicity (how often?)

e Amplitude (how big?)

o Deviation (how well behaved?)

Predictive model: antecedents of software
volatility

o Software characteristics

e Maintenance profiles (history)

o Environmental factors

Predictive model: determinants of
lifecycle maintenance outcomes
e Basic System Characteristics
e Software Evolution

e Maintenance profiles

o Software volatility

Contribution

e Full picture of lifecycle volatility -
system-level measure, multi-
dimensional, direct, objective, measures

e Measurement provides basis for theory
and testing

e Gain perspective on life cycle behavior
of sofiware systems

understanding evolutionary behavior
e identify and understand driving
forces of software volatility
e help software engineers and
managers design for change

o Link between software volatility and
maintenance errors and costs

o identify behavioral patterns in
software lifecycles

e Improves manager’s ability to predict
errors and costs

Importance to
researchers

Direct objective measure, provide foundation
for new theory

Start to explain differences in lifecycle
system behavior

o [Identify patterns in system evolution
and link to lifecycle maintenance
outcomes

e Predictive validation of software
volatility measures

Importance to MBA
students

Lifecycle perspective on system management

Emphasizes need to design for change

Shows link between lifecycle
maintenance outcomes and software
volatility

Importance to
undergraduates

System-level perspective on sofiware
behavior

Explain differences in software behavior

Demonstrate link between lifecycle
maintenance costs and errors and system
factors

Importance to
industry

Can only manage what can be measured

Table I: Summary of Contributions

Lifecycle perspective for system support
resource requirements

Improve forecasting of lifecycle

maintenance outcomes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX A:

CONFIRMING EVIDENCE FOR LAWS OF SOFTWARE EVOLUTION

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CONFIRMING EVIDENCE FOR LAWS OF SOFTWARE EVOLUTION
Lehman et al. (1997) developed a set of laws describing the evolution of software

systems. Development of these laws occurred over 25 years, and was based on a series of
empirical studies. Most of these studies used data from relatively short data collection
periods (less than 3 years) and concentrated on the behavior of software for operating
systems. In some cases the laws were confirmed by analyzing the same data used to
formulate the laws (Yuen, 1987). The availability of a longitudinal set of data covering
23 distinct application systems affords us a unique opportunity to independently confirm
those laws. Empirical data from the research site (Kemerer and Slaughter, 1997, 1999)

offer an opportunity to investigate the first seven laws of software evolution.'

Laws of Software Evolution Description

Law of Continuous Change Svstems must continually adapt to the environment to
maintain satisfactory performance

Law of Increasing Entropy (later renamed Law of As systems evolve they become more complex unless

Increasing Complexity) work is specifically done to prevent this breakdown in
structure

Law of statisticaily smooth growth (also called the Law of The software evolution processes are scif-regulating and

Self Regulation) promote globally smooth growth of an organization’s
software

Law of invariant work rate (also called Law of The organization’s average effective global activity rate is

Conservation of Organizational Stability) invariant throughout system’s lifetime

Law of conservation of familiarity Incremental growth rate of a system is constant to
conserve the organization’s familianty with the software.

Law of continuing growth Functional content of systems must be continually
increased to maintain user satisfaction

Law of declining quality System quality declines unless it is actively maintained
and adapted to environmental changes

Law of system feedback Software evolutionary processes must be recognized as

multi-level, muiti-loop, muiti-agent feedback systems in
order to achieve svstem improvement.

Table 1: Laws of Software Evolution (Lehman et al., 1997)

! Law 8: the Law of System Feedback, cannot be tested with this data. Tests for system feedback require
pre- and post-test data collection, similar to that planned in the FEAST research projects (Lehman and
Ramil, 1999).

Appendix A - 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Each system can be analyzed individually using the full lifecycle history.

Portfolio level analyses can be run by using the unbalanced panel data set used to

investigate research question 2.
Laws of Software Evolution Test Variable Prediction®
Law of Continuous Change Change events/month Positive
MTSM Positive
Law of Increasing Entropy / Law of Complexity Increasing over time
Increasing Complexity
Law of Statistically Smooth Growth Change events / programmer-month Constant over time
Law of Invariant Work Rate Change in size / month Constant over time
Constant over time
Change events / programmer-month
Law of Conservation of Familiarity Change in portfolio size / month Constant over time
Law of Continuing Growth Size Increasing over time
Law of Declining Quality Errors Increasing over time
Increasing over time
Change events/month

Table 2: Testing the Laws of Software Evolution

2 Predictions will be checked with pair-wise correlations.

Appendix A - 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Variables needed to verify Laws of Software Evolution

Concept Operational variable Definition or name in *.dta file
age portfolio age Months since earliest system implementation
age Avg. system age Mean system age in portfolio
age system age Applage
age Avg. program age Mean program age in a system
age Avg. LOC age Mean LQOC age in a system
Change Periodicity NMTSM
Change Amplitude NORMLOC
Change # change events Allchg
Change size LOC added LOC
Change size New programs added Creations
Change size Cyclomatics added Cyclom
Change size Operands added n2
Change size Calls added calls
Complexity System total cyclomatic Totcyclom
Complexity System total n2 Totn2
Complexity System total calls Totcalls
Complexity Normalized cyclomatic Nrmcyclom
Complexity Normalized n2 Nrmn2
Complexity Normalized calls Nrmcalls
System size Total LOC Totloc
System size No. of programs Module_count
Capacity unit month 1 month
Capacity unit Programmer-month Programmer-count * | month
Work rate Changes per month Alichg / programmer count = wrl
Work rate Change size per programmer-month LOC / programmer count = wr2
Work rate Change size per programmer-month Programs / programmer count = wr3
Work rate Change size per programmer-month Cyclom / programmer count = wr4
Work rate Change size per programmer-month N2 / programmer count = wrs
Work rate Change size per programmer-month ~ Calls / programmer count = wré
Change rate Change size Programs created
Software faults No. Of corrections Sumcorr
Software faults _ Total changes Allchg
Table 3: Operational Variables

Appendix A - 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Law _ Concept Correlation expected Regression expected __Plot needed
1 Change Corr (change,age) > 0 Change = f{age) Change vs. age
B <0
2 Complexity Corr (complexity. Age) > Complexity = flage) Complexity vs. age
0 Buge >0
2 Deviation Corr (deviation, age) > 0 e Deviation vs. age
3 Change size Corr (change size, age) > Change Size vs. age
0
T-test (change size =
Mchangs size)

4 Work rate =work Corr (work rate, age) > 0 Work rate vs. age

/ capacity unit T-test (workrate =
Hvworkrase)

5 Change rate = Corr (change rate, Change rate vs.
Change in portfolio age) portfolio age
Pontfolio size / T-test (change rate =
capacity unit Hchangs rate)

6 System size Corr (size, age) >0 Size = f{age) Size vs. age

Pug: >0

7 Software faults Corr (faults, age) >0 Faults = f{age) Faults vs. age

>0

Table 4: Operational Variables and Expected Relationships

Confirming Evidence
Law 1: Law of continuous change

System age Average program age _ Average LOC age

Periodicity -0.3239 -0.1272 0.1576

Amplitude -0.1530 -0.1609 -0.2275

change events 0.1495 0.0275 -0.1376

Correlation (change, age)

N Mean Stddev. k-sz 2-tailed p

Periodicity 3201 04802 0.4601 16.9010 0.0000

Amplitude 3201 00282 0.1203 23.0357 0.0000
_#changeevents 3201 _ 8.9510 102678 17.6562 _ 0.0000

Testing for Normal Distribution

Appendix A - 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Law 2: Law of Increasing Entropy

Systemage Average program age Average LOC age
System total cyclomatic 0.2932 0.0990 0.1194
System total n2 0.3526 0.1263 0.1151
System total calls 0.1554 -0.0412 0.0592
Normalized cyclomatic -0.0680 0.0348 0.1333
Normalized n2 -0.0916 -0.0128 0.0802
Normalized calls -0.0738 -0.1902 -0.0807
Correlation (complexity, age)
N Mean Std dev k-sz 2-tailedp

System total cyclomatic 3201 9138 11236 11.783 0.0000
System total n2 3201 32132 37361 11.1436 0.0000
System total calls 3201 2116 3628 15.832 0.0000
Normalized cyclomatic 3201 0.0566 0.0229 76711 0.0000
Normalized n2 3201 0.2187 0.0608 4.5047 0.0000
Normalized cails 3201 0.0080 0.0055 4.8847 0.0000
Testing for Normal Distribution
Law 3: Law of Statistically Smooth Growth

System age Average program age Average LOC age
LOC 0.0052 -0.0650 -0.0903
Creations 0.0678 -0.0254 -0.1372
Cyclom 0.0002 <0.0646 -0.0903
N2 0.0166 -0.0631 -0.1075
calls -0.0037 -0.0755 -0.0774
Correlation (change size, age)
t-tests
Hp: LOC = meano hypothesis cannot be rejected
Hoy: creations = meancreations hypothesis cannot be rejected
Ho: cyclomatics = meancyciomatics hypothesis cannot be rejected
Hy: n2 = mean,, hypothesis cannot be rejected
Ho: calls = meang,ps hypothesis cannot be rejected

Appendix A - §

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Law 4: Law of Invariant Work Rate

Systemage Average programage Average LOC age

changes / programmer months -0.1312 -0.0586 -0.1126
LOC added/ programmer months -0.1251 -0.1158 -0.1428
Programs changes / programmer months -0.0839 -0.0215 -0.0566
Cyclomatics added / programmer months -0.1458 -0.1267 -0.1649
N2 added / programmer months -0.1418 0.1302 -0.1783
Cails added / programmer months -0.1007 -0.1076 -0.0965

Correlations (work rate, age)

t-tests

Ho: # changes/programmer-months = meany changes/programmer-months
hypothesis cannot be rejected

Ho: LOC/programmer-months = Mmeanoc/programmer-months
hypothesis cannot be rejected

Hy: programs changed/ programmer-months = meaNrgrams changed/ programmer-months
hypothesis cannot be rejected

Ho: cyclomatics/ programmer-months = meancyciomancs programmer-months
hypothesis cannot be rejected

Hoy: n2/ programmer-months = meanay; programmer-months
hypothesis cannot be rejected

Hy: calls/ programmer-months = meangiiy programmer-months
hypothesis cannot be rejected

Law 3: Law of Conservation of Familiarity

System age Average program age Average LOC age

programs created / programmer months -0.1553 -0.1220 -0.2025
LOC added/ programmer months -0.1251 -0.1158 -0.1428

Correlations (change rate / capacity, age)

Appendix A -6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Law 6: Law of Continuing Growth

Correlations (size, age) [same correlation test as Law 3]

N Mean Stddev k-sz 2-tailedp
LOC 3201 2956 13969 23.547 0.0000
Creations 3201 1.0997 33372 20.935 0.0000
Cyclom 3201 139834 674903 236454 0.0000

N2 3200 492 2028 228564 0.0000
calls 3201 32748 182107 242515 0.0000
Testing for normal distribution

Law 7: Law of Declining Quality

Systemage Average programage Average LOCage

corrections 0.0750 -0.0089 -0.1337
modifications 0.1495 0.0275 -0.1376
Correlation (faults, age)

N Mean Stddev k-sz 2-tailed p
corrections 3201 8.951 18.2678 17.6562 0.0000
modifications 3201 09528 2.3004 20,9571 0.0000

Testing for normal distribution

Appendix A -7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

REFRENCES

Kemerer, C.F. and Slaughter, S.A., "Methodologies for Performing Empirical Studies:
Report from the Intenational Workshop on Empirical Studies of Software
Maintenance”, Empirical Software Engineering, Vol. 2, No. 2, 1997, pp. 109-118.

Kemerer, C.F. and Slaughter, S.A., 1999, "An Empirical Approach to Studying Software
Evolution”, [EEE Transactions on Software Engineering, Vol. 25, No. 4, pp. 493-
509.

Lehman, M.M. and Ramil, J.F., "The Impact of Feedback in the Global Software
Process”, The Journal of Systems and Software, April 15, 1999, Vol. 46, No. 2,3,
pp. 123-134.

Lehman, M.M., Ramil, J.F., Wemick, P.D., Perry, D.E. and Turski, W.M., "Metrics and
Laws of Software Evolution - The Nineties View”", Metrics '97, the Fourth
International Software Metrics Symposium, 1997, Albuquerque, NM.

Yuen, C.H,, "A Statistical Rationale for Evolution Dynamics Concepts”, Proceedings of
the Conference on Software Maintenance, 1987, Austin, TX.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX B:

DATA CODIFICATION AND SEQUENCE ANALYSIS METHODOLOGY

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX:

MAINTENANCE ACTIVITY CLASSIFICATION AND SEQUENCE ANALYSIS
This is a step-by-step description of the data collection and codification processes

used in this research. The following discussion concentrates on the collection and
codification of maintenance activities and sequence analysis of those activities and
associated levels of software volatility.

Maintenance Activity Classification

Stepl: convert source code modification log to change history records
Software change events were extracted from maintenance logs written by system

support programmers each time they updated a system in the portfolio. Logs were kept
for more than 25,000 changes to 3,800 programs in 23 different information systems
from the beginning of the early 1970’s, when many of the systems were originally
written, until the end of the data collection period, June 1993. The information systems
represent more than two-thirds of the functionality accomplished by the full complement
of the Retailer’s systems. The data available in the change logs includes the original
program creation date and author, program function, the maintenance project description,
the programmer making a change, the date of the change, and the description of the
change. In addition, the change logs reference the user project request. In many cases, the
changes made to the systems are in response to emergency situations rather than user
requests.

The data codification process captures the source and type of change made.
Change event history records are dated by modification implementation date. For an

example of a change log, see Figure 1. Such documentation allows the unit of analysis for

Appendix B - 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

this research to be the individual change event,' of which there were approximately

25,000 during this period.

] L 4

PROGRAM-ID. <REDACTED>M110.
AUTHOR. JOHN <REDACTED>.
INSTALLATION. <REDACTED>.
DATE-WRITTEN. FEBRUARY 1990.
DATE-COMPILED.

]
SESFESSCS SIS LEESISSESESSSSS PSSR IS IEEEESSUO LSS EEEBERR S

* XXXM110 ON-LINE RECEIVING ENTRY PROGRAM CHANGE LOG

SEESSESEIEERESEEE S EESLISRERESEISESSSEEREESESEEEEESSESESESSSE8S

* DATE: 01/02/91

* PROGRAMMER: JOHN <REDACTED>

* CHANGE: COMPLETELY RESTRUCTURED PROGRAM.

* CHANGE: RESET IDOC MRNC-DEDUCT-FLAG, WHENEVER A RECEIPT IS MADE,
* TO A'N'O VALUE.

* CHANGE: REDUCE THE NUMBER OF SKU LINES ON THE SCREEN TO EIGHT

* AND INSTEAD HAVE IDOC COMMENT FIELDS.

* CHANGE: BE SURE NEXT PO IS NEVER SET TO AN SAV PO.

* CHANGE: UPDATE BTCN SEGMENT FOR EVERY UPDATE TRANSACTION, EVEN
* (F USER DOES NOT ENTER END-OF-RCPT ='Y".

* CHANGE: ADDED FEATURE THAT LOSS-DAMAGE NUMBER AND DEBIT-MEMO
. NUMBERS ON BTCN SEGMENT WILL NOT BE REPLACED WITH ZEROS

* FROM A CURRENT UPDATE IF THEY HAD CONTAINED NON-ZEROS.

* PROJECT REQUEST #: 403

SR IREICLLEFECELRL LSRR ESELEE SV LE USRSV LL IR OS2 SSSSEREES

* DATE: 02/26/91

* PROGRAMMER: JOHN <REDACTED>

* CHANGE: FIX LOOP BUG.

* CHANGE: DON'T INSERT BMRR SEGMENTS FOR MANIFESTS.

* PROJECT REQUEST #: EMERGENCY FIX

SS00SSSE LRSI SR ESEELESL PSSO L LRSS ESLESSEE0SS0888880888

Figure 1: Portion of a Sample Change Log

Change logs were used to codify change events for each program or subprogram
in the portfolio based on the classification scheme for identifying software maintenance
activities. A complete breakdown of maintenance activity categories is shown in Table 1.

This is the lifecycle maintenance activity taxonomy with additional categories delineating

! Change events include any add, change or delete of program source code, and implementation of any new

Appendix B - 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright ow

add, change or deletion of source code for each of the sub-types of activities. Capturing

data at this detailed level allows for more flexibility in subsequent analyses.

Corrective Enhancement/Perfective

Data Handling (CorrectDat) Data Handling: Add, Change, Delete
Logic/Structure (CorrectLog) (EnhDatAdd, EnhDatChg, EnhDatDel)
Computation (CorrectCom) Logic/Structure: Add, Change, Delete
Initislization (Correct/nit) (EnhLogAdd, EnhLogChg, EnhLogDel)
User Interface (CorrectUserl) Computation: Add, Change. Delete
Module Interface (CorreciMod]) (EnhComAdd, EnhComChg, EnhComDel)
Adaptive Initialization: Add, Change, Delete

Data Handling (AdaptData) (EnhiniAdd, EnhiniChg, EnhiniDel)
Logic/Structure (4daptLogic) User Interface: Add, Change, Delete
Computation (AdaprComp) (EnhUsrlAdd, EnhUsrIChg, EnhUsrIDel)
Initialization (Adaptinit) Module Interface: Add, Change, Delete
User Interface (AdaptUserl) (EnhModlAdd, EnhModIChg, EnhMod]Del)
Module Interface (4dapiMod]) New (NewProgram)

Table 1: Classification Scheme (Codes in parentheses)

To classify each event in the change logs, a content analytic approach was

adopted using a combination of latent and manifest coding techniques. Manifest coding

involves looking through the text of the change log for visual occurrences of certain key

words. Latent coding identifies the underlying meaning in text of the change log when

key words are not sufficient to categorize events. Both approaches to coding will be

necessary to account for possible inconsistencies in how the maintenance programmers

logged their maintenance activities.

Multiple data coders were employed to content analyze the change logs. The

coders were selected based upon their in-depth knowledge of the information systems

field so they could identify terms and acronyms, and categorize events accurately.

Because of the sensitivity of data-dependent research to error, it is important that

measures be as reliable and valid as possible. Therefore, the data capturing procedures

programs in the system.
? Adapted from Rombach, Ulery and Valiett (1986)

Appendix B - 3

ner. Further reproduction prohibited without permission.

employed a number of methodologies designed to maximize interrater reliability and to
assess and improve coding validity. A coding flowchart was employed to provide a
consistent way to classify change events. Each coder was instructed in a standard set of
coding procedures. For consistency, coders referred any change event that could not be
classified using the flowchart to the principal investigators for resolution. As these cases
arose, adjustments were made to the coding flowchart. See Figure 2 for the final version

of the coding flowchart.

Appendix B - 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- T T 7
N : m l 7
LT e =
N
Y —
7 o, | !
~ —_—
A -
I < compute, —-—Yu——-' mm’i
' o —eoded
.
e -~
/'/ . ! . ‘ ——
B A
I No |
| =
/“\7‘ ’ '
o L !
| No |
| /’;:;}\\ ' ! module |
“sysem? " YT imerface |
| T
——— e o an— a—]

Figure 2: Coding flowchart
To increase intercoder consistency, several trial data coding processes were

performed. In these trials, the primary investigators randomly selected a set of
maintenance events. After each coder independently coded those selected maintenance
events, the Cohen coefficient of agreement, Cohen’s K, for nominal scales was computed
to assess the relative pair-wise agreement between coders (Emam, 1999). Systematic
differences in coding after each trial were discussed and resolved. The coders

independently classified another set of maintenance events. When sufficient interrater

Appendix B - §

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

reliability has been achieved, the maintenance events for the different information
systems were divided among the coders. "Coder drift" or exhaustion was investigated by
analyzing a sample of each coder’s work near the end of the coding process and checking
it against the principal investigator's coding of the same events. Tests for coder drift were
repeated throughout the data coding process at periodic intervals. As another validity
check, the principal investigators randomly inspected coded events to see if there were
any degradations in accuracy. Finally, change logs were compared where possible with
related data from the Retailer’s maintenance activity tracking system, to ensure that the
coded change logs are capturing the maintenance activity. All of these measures helped to
insure the reliability and validity of the change history records.

The change event history records for each system were recorded in a spreadsheet.
The researcher then had a series of 23 spreadsheets, containing one record for each date
that each program was modified. If an individual program showed multiple change
events on the same day, the maintenance activity entries represented the count of
activities occurring in that progiam on that day. These spreadsheets will be referred to as
the system change history file.

Step? - start with change history records and create sum by date
The system change history file was sorted by year-month of change

implementation, and counts in each category of maintenance activity aggregated by
month. The resulting spreadsheet was referred to as the sum-by-date file. The range of
dates covered in the sum-by-date file for each system varied according to the earliest

program creation date for each system.

Appendix B - 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The sum-by-date file for each system was inspected for missing months. Any
year-months missing were inserted into the sum-by-date file for each system. Counts for

each maintenance activity category were set to zero on all inserted records.

Step3 - heuristic to identify maintenance activity for the month
Starting with the sum-by-date file for each system, each month was classified

according to the major type of lifecycle maintenance performed that month. The
classifying heuristic identified which maintenance activity type had the maximum
frequency (count) in that month and labeled the year-month record accordingly. The
label categories were new, stable, corrective, adaptive and enhancement. If two
categories had equal frequencies, the phase name was set according to this same ordered
list. For each year-month classified enhancement, a subcategory was assigned by a
similar heuristic for six subcategories: logic, data, compwation, initialization, user
interface or module interface (Barry, Kemerer, Slaughter, 1999). Again, if there were
equal frequency counts, the subcategory was labeled in this same order. See Figure 3 for

an example using this heuristic for part of one system's activity identification process.

Appendix B - 7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ek SUTSErh Survenh- SUT-Bh- Sorrent

oy

i

&
8

!
b
¥

Ao i RI-gnh JUM-enh e Tere
g

wn
stadiy comect scapt snnerce acd

OO OO DN OO0 00O OO0 OD000 0D OUURDNDDDODOORLONO00000DON-~0UNUND~DOUDYODNUAODON-rOOO0OD - =MO+-VOLLONDSOD . -
VDUULULUUDULUULOUUULUUULUUULUUVULN S JOLOUULULULDUULUUOLUULDLDUUOULDUU S - - U R RN - e e = QU S VW INUD > U U - UL U = 1= DI o v o
OO O D D OO0 O N D U D DD N O D DU O D DN 0O DO O D000 OT 0000 C00DD D00 DDUNDO-~U00dOD00000RDPOEDO000T0BANN0Bl00TOSR
OO0 000NNV ODOCOODPOLDDVDONODODDDO-~0DDNOC00ODORUOVONN000N -~ -~ONNOONN-~00000D " -VODD- 0D~ De-DODMNDrBIC-~BD00

LA A A bl Rl i A R Al R i Al e e o R R R Rl X - R R T A R R DL A X - T S R R R R R]

CC OO OO OE OO U OO0 OO DN - 0O - ON - D00~ +- - - ODUD - IO ONOUNOOMDO - M NMOVMNNOYMNO-MIY MU ENAR - TNV MNEMTODMmY M

i

0O 000N a0 N0 O OCCUOdCOOCNO- 00 - DDODNDOMNOODODDUDODDNLDO -~ 000D COUO0D-~OMNMO-YOMNMNEFe-rNO-OOOMNNOODAMNMeMNO~0"20-OMOOM e

intenance actmty

00O0ODQOCOoONDO000UD0O0OUUOO0QO Or O r D" MMNMOD-OUOV e M-rORD- OO WO 8'33313”05‘753“692-‘-‘“

nns:asgasasw-asrs‘-’sz‘2&3

COO0O0800A000. O00DA: ARV GO AT 00 N MHOCON0ONNILUOCOOBLBO: + - ONINNND: CDHVNDMWVLRHVAFMNT BOEVMEO - 2 3 LNO NN

COoO00O0QOUOUOO00O>0D0DODOUOODN - - = e M- c~§55521ﬂ-ﬂ-aaflsoc-‘aa‘o'aq“JascmggsaanﬂzssussﬂnﬂuWSB-uﬁ‘gnw‘57nQ7"m217"79

OO DO OO ONDB 00000 CORUODOCooDENOCUNCCN: COONCOUUOOCAOUOACOD NGOV COUTOUOUU: O » OYMMOVODODD - DOUDHODDLODBVO

by ma:

000000000 UONO0 D0 UNOPVONONO0CC000ONOrCoUNO0NOCNOC - o000 "D ONEMOONMOOON T - DO~ YTMORON-DO-~0DDOMWNDDOD DD~

th

ing year-mon

trrr s e s e s s Dy s 00 O P ODOOODOO0OQDOONOLVLEOD: O TCOEODLOOD DO COOO0UOOUVUOCOOCUOUODOO0000VUoCOONUOJCAO00C00C0DLUOODDDDOOD

e s e et et r Dm0 e - r D000 C0DO0 000D s s e OO0 s O - O rO0 -~ = 0000 Q0CUUINO - OO0 O000OCOOUVUDO-DOoOvOUOODDLLDODDODODD O

M
ippabbREREREREL R A bRRsE
CRURREERBEREERERERERARCERE

labeli

f m
¢ tfean
ABRRRRAERaRE

33
CEL

9105 dete enhance

NW ogc enhancs

3108 opc onhence
Figure 3

B-8

Appe

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Step4 - chronological vector of maintenance profile
After each record in the system sum-by-date file had been identified by

maintenance activity type, a chronological vector of maintenance activities was extracted.
Each element in the vector represented a month's dominant activity. Separate
chronological vectors of activities were created for each system. The vector

corresponding to the example shown in Figure 3 is displayed in Figure 4.

Appendix B -9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ttadie

]

134

i1

lage
o

f441

fFHa4%i4E

Figure 4: chronological vector of maintenance activities

Appendix B - 10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Step3 - phase map for maintenance activities
For each system, the chronological activity vector was input into Winphaser

software to begin a longitudinal sequence analysis of information system behavior. The
resulting categories of dominant monthly activities were used to create a chronological
vector of phases for each system. These vectors were then individually analyzed by
Winphaser’ software to produce both phase and gamma maps (Pelz,1985; Kemerer and
Slaughter, 1997; 1999). Phase mapping techniques analyze nominal data to identify
sequences of similar categories. These sequences identify similarities in sequences of
nominal data to show pattems of behavior. Winphaser maps the input vector of nominal
data elements to a phase map to help analyze and identify patterns in the nominal input
vector. Winphaser allows the user to vary phase length from one sequence analysis to
another. By changing the phase length, researchers can simplify resulting sequential
patterns and improve the confidence level of resulting phase maps. Winphaser identifies
sequences of like activities with phases of specified phase length. If activities are so
varied that none of the types are predominant, Winphaser creates a Pending phase.
Smaller phase lengths create fewer pending phases in the phase mapping.

The input vector shown in Figure 4 was sequentially analyzed by Winphaser to
produce the phase map shown in Figure 5.

? Winphaser software is used for sequence analysis of nominal data. Winphaser was written by Michael
Holmes at University of Utsh, as adapted from Holmes and Poole, 1991.

Appendix B - 11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sample

stabie Pending lsgic Ponding e Pusing

| !! |
e r

SN B |
¢
{

Figure 5: phase map from Figure 4 sample input vector (optional phase length = 3)

Step6 - gamma map for precedence ordering of maintenance profiles
Winphaser also provided a gamma analysis and precedence mapping to identify

the predominant phase order. Phase length was set to insure an average confidence level
of 50% for the gamma analysis for the input vector of maintenance activities in each
system's history. The same phase length was used for both the activity phase map and
gamma analysis. The heuristic used for setting phase length was to find the smallest
phase length that allowed at least a 50% average confidence in the precedence ordering,
thus creating the fewest pending phases with the required level of confidence in the
identified phase ordering. Phase lengths varied from system to system. Figure 6 shows

the gamma analysis and precedence map established by the input vector in Figure 4.

Appendix B - 12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

WinPhaser Gamma Analysis
SAMPLE~1 09-24-1999 14:14:50 L3 N100 D1-8 99 (Full Length)

Phase Frequency

data 3
logic 26
new 4
Pending 44
stable 22

Precedence Counts

data logic new Pending stable
data 0 57 12 132 66
logic 21 0 84 787 572
new 0 20 0 108 88
Pending 0 357 68 0 968
stable 0 o] 0 0 0

Pairwise Gamma Scores

data logic new Pending stable
data .000 .462 1.000 1.000 1.000
legic ~.462 .000 .615 .376 1.000
new -1.000 -.615 .000 .227 1.000
Pending ~1.000 -.376 -.227 .000 1.000
stable -1.000 -1.000 -1.000 -1.000 .000

Separation Scores
data logic new Pending stable
0.865 0.613 0.711 0.651 1.000
Precedence Scores
data logic new Pending stable
-0.865 -0.382 0.097 0.151 1.000
Phase Diagram
stable*** Pending*~ new** logic** datar**
* .25 < separation < .50

** .50 < separation < .75
*** .75 < separation

Figure 6: gamma analysis and precedence map

Appendix B - 13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Software Volatility Analysis:

Step! - sort change history records
The change history file for each information system was sorted: primary sort

system name, secondary sort change date.

Step? - calculate time since previous software modification
The sorted change history records were expanded to include a calculated field for

time since previous software modification. The elapsed time since the prior change

record for that program is calculated.

Step3 - re-sort change history records
The resulting expanded change history file was sorted by year-month.

Step4 -calculate MTSM and change dispersion
Change history records were aggregated by the time unit of analysis.' In most

cases the unit of analysis is monthly and the records were aggregated by year-month of
change implementation. The Mean of Time since Software Modification, MTSM, was
calculated for each year-month, and the variance for each MTSM was recorded as the

change dispersion for the same year-month.

Step$ - set periodicity, amplitude and deviation high/low indicators
For each information system, the lifetime mean periodicity, amplitude and

deviation were calculated. High/low indicators’ for each dimension are set for each

month.

* This discussion relies on measures aggregated by month. Software volatility measures to investigate
research question 3 on maintenance costs calculate software volatility on a quarterly basis.

* Periodicity indicators are set for long/short to indicate time intervals longer or shorter than average.

Appendix B - 14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Stepb - identify volatility classification for each month as follows:

Two coding schemes for nominal classification of software volatility are used.
The first scheme classifies volatility by examining characteristics of the periodicity
(timing) and deviation (predictability) of software modifications. The second scheme
uses all three dimensions of software volatility. Scheme 2 classified systems behavior by

amplitude/periodicity/deviation.

Classification | Periodicity level | Deviation level
A Short Low

B Short High

C Long Low

D Long High

Volatility Classification Scheme 1: Periodicity/Deviation

Classifica- Amplitude Periodicity Deviation Description

tion

I Low Long Low Least volatile: occasional small
modifications occurring in a well-
behaved pattern

n Low Long High Occasional small modifications with
wide variance of behavior among system
programs

m Low Short Low Constant smail modifications occurring
in a well-behaved pattern

v Low Short High Constant smail modifications with wide
variance of behavior among system

<

programs
High Long Low Occasional large modifications
occurring in a well-behaved pattern
Vi High Long High Occasional large modifications with
wide variance of behavior among system
programs
vl High Short Low Constant large modifications occurring
in a well-behaved pattemn
Vil High Short High Most volatile: constant large
modifications with wide variance of
behavior among system programs
Volatility Classification Scheme 2: amplitude/. periodicity/deviation

Table 2: High/low indicators and volatility classifications

Appendix B - 15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Step7 - chronological vector of volatility classifications
As with the chronological vector of activity phases, a similar vector of volatility

classifications is created for each information system. After the appropriate classification
scheme is selected, a chronological vector is created for the life span of the information

system. This vector is used as an input file for Winphaser mapping and gamma analysis.

Step8 - phase map of volatility classifications
Winphaser sequence analysis was run for the chronological vector of volatility

classifications associated with each system.

Step9 - gamma map for precedence ordering of volatility classifications
This same sample data was used as input for gamma analysis and precedence

ordering produced by Winphaser. The 4-level classification of volatility was used as a

basis for the sample gamma analysis in Figure 7.

Appendix B - 16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

AinfPnrise:r Zamma Analyszi:s
FSRQUA-~: J9%=24~-1999 §:8€:22 L3 Nloe J:-8 24e tFoll

Frase Frequency

A T
] M
z £z
Prezesdence Tounta
A 8 <
A © ER-N-] 782
E 421 3 J1538
o4 322 iz -
Pslrwize 3Jamma 3:crces
A 3 <
A RV .3E” 232
8 -.387 .n8G 3¢
< -.3d0 -. %82 s
3eparaciorn 3gitres
LY]
] 3 an 3}
FreCe2ence Sricai
~ K z
I N T
Frase Diazram
g
. J8 7 segparastion - LB
. 5S¢ <« sepazation <« 7%
- "5

« sgegarazizn

Figure 7: Sample Gamma analysis and precedence ordering
The example gamma analysis in Figure 7 identified 77 software volatility A
phases, 17 software volatility B phases and 152 software volatility C phases. The

precedence ordering reports that most of the time the system's volatility travels from type

C to type A to type B.

Stepl0 - radial graphs of stability quadrants
To show ordering and relative magnitude of volatility classifications the

precedence ordering and volatility phase frequency reported from the gamma analysis
were normalized and displayed in the form of a radial graph. First, the classifications

were ordered by severity and degree of volatility from a software manager's planning
Appendix B - 17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

perspective. The ordering listed in Table 3 was based on Classification scheme 1 using

periodicity/deviation.
Volatility classification Order
C 5

D 4
Pending 3

A 2

B 1

Table 3: Volatility Classification Ordering

The length of each phase was normalized as the proportion of that type relative to
all types identified by the gamma analysis. For the sample in Figure 7, the normalization
is as follows:

A: 77(77-17-152) = 0.30

B: 17(77-17-152) = 0.07

C: 152(77-17-152) = 0.63

The resulting radial graph is displayed in Figure 8.

Radial graphs were created for each information system to allow visual
comparison of the changes in volatility over system life spans. A set of graphs was

created for each classification scheme. They are displayed in the next two appendices.

Appendix B - 18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 8: Radial graph of volatility gamma analysis

REFERENCES

Barry, E.J., Kemerer, C.F., and Slaughter, S.A_, "An Empirical Analysis of Software
Evolution Profiles and Outcomes”, Proceedings of the International Conference
on Information Systems, Charlotte, NC, December 1999.

Emam, Khaled El, "Benchmarking Kappa: Interrater Agreement in Software Process
Assessments”, Empirical Engineering, 1999, No. 4, pp. 113-133.
Holmes, M.E., and Poole, M.S., "Longitudinal analysis", in S. Duck and B. Montgomery

(Eds.), Studying interpersonal interaction, New York, Guilford, 1991, pp.286-302.
Kemerer, C.F., and Slaughter, S.A., "Determinants of Software Maintenance Profiles: An
Empirical Investigation”, Journal of Software Maintenance, 1997, Vol. 9, pp. 235-
251.
Kemerer, C.F., and Slaughter, S.A., "An Empirical Approach to Studying Software

Evolution", IEEE Transactions on Software Engineering, July-Aug. 1999, Vol.
25, No. 4, pp.493-509.

Pelz, Donald C., "Innovation Complexity and the Sequence of Innovating Stages”,

Knowledge, Creation, Diffusion, Utilization, March 1985, Vol. 6, No. 3, pp. 261-
291.

Appendix B - 19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX C:
RADIAL GRAPH REPRESENTATIONS OF GAMMA ANALYSES

Using Periodicity Deviation Classification of Software Volatility

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ADV

1 ' 2

Appendix C - 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APX

Appendix C - 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11, o 2

Appendix C - 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ARI|

Appendix C - 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ARS

Appendix C - §

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BTK

Appendix C-6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CPM

Appendix C - 7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CSA

Appendix C - 8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FAM

Appendix C -9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FSR

Appendix C - 10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

GLM

Appendix C - 11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MAN

Appendix C - 12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MPC

11,

Appendix C - 13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

MPF

Appendix C - 14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix C - 15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

OMS

11, ’ 2

Appendix C - 16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PCS

1, T 2

Appendix C - 17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PMS

Appendix C - 18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PPS

1. > 2

Appendix C - 19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PRP

Appendix C - 20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PRT

1. o 2

Appendix C - 21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PYR

Appendix C - 22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

uis

Appendix C - 23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPENDIX D:
RADIAL GRAPH REPRESENTATIONS OF GAMMA ANALYSES

Using Periodicity Amplitude Deviation Classification of Software Volatility

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

s
o

wan XdV emsmes

o M o =

SWd.
US4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

AnejoA swneyy | dnoao

T - @ xipuaddy

SHY @ =

VS) =

v
X
O

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

AnnejoA swnay z dnoio

" Ot

b

N

3>

<

3

=

x

o)

w T
[o)]

SIN m =
NN e
N1 e

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

—

Aynejop ewney ¢ dnos

\\\
‘\"_N_ .
- N W b&ab " N OO

. 7~ .
3
e
2 ~”
2 ”~
s

, l
¥ |
> °
<] S 3
< (72] 2
S 2
)
3 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Annejop awnej) y dnoso

§ - @ x1puaddy

o -
- w
P~
[]
. |
n T o
> p ;| <
= - p o]
S B
>
° \
] v % i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Aynejop swpep s dnoso

