
www.manaraa.com

INFORMATION TO USERS

Tnis manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.comR e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

SOFTWARE EVOLUTION,

VOLATILITY

AND

LIFECYCLE MAINTENANCE PATTERNS:

A LONGITUDINAL ANALYSIS

Evelyn J. Barry
Carnegie Mellon University

Graduate School of Industrial Administration

A Thesis

April 30,2001

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

UMI Number 3040431

Copyright 2002 by
Barry, Evelyn Jean

All rights reserved.

UMI*
UMI Microform3040431

Copyright 2002 by ProQuest Information and Learning Company.
All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CARNEGIE MELLON UNIVERSITY

GRADUATE SCHOOL OF INDUSTRIAL
ADMINISTRATION

DISSERTATION

Submitted in partial fulfillment of the requirements

for the degree of d o c t o r o f p h i l o s o p h y_____________

INDUSTRIAL ADMINISTRATION (INFORMATION SYSTEMS)

Title "SOFTWARE EVOLUTION, VOLATILITY AND LIFECYCLE MAINTENANCE
PATTERNS: A LONGITUDINAL ANALYSIS"

Presented by EVELYN J. BARRY

Accepted by

Professor Chris Kevmerer
Approved by the.

Co-Cha ssorSafhdra Slaughter
SOI Z,Q&f
Date

i
Date

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

TABLE OF CONTENTS

Table of Contents
List of Figures
List of Tables
Acknowledgements
Abstract
Chapter 1: Introduction 1-1
Chapter 2: Literature Review; Software Evolution 2-1
Chapter 3:
Research Question 1- 3-1

A Multi-Dimensional Measurement of Software Volatility
Chapter 4;
Research Question 2- 4-1

Antecedents of Software Volatility
Chapter 5:
Research Question 3: 5-1

Characteristics of Software Evolution and Lifecycle Maintenance
Outcomes

Chapter 6: Conclusion 6-1
Appendices;

Appendix A; A-l
Confirming Evidence for the Laws of Software Evolution

Appendix B;
Data Codification and Sequence Analysis Methodology

Appendix C; C-l
Radial Graph Representations of Gamma Analyses

Using periodicity/deviation classification of software volatility

Appendix D;
Radial Graph Representations of Gamma Analyses 0-1

Using periodicity/amplitude/deviation classification of software
volatility

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

LIST OF FIGURES

Table - Title page
Chapter I

1 Software Evolution and Lifecycle Maintenance 1-2
2 Overview of Three Research Questions 1-4

Chapter 2
1 Embedded Systems 2-2

Chapter 3
1 Evolution of System A 3-9
2 Evolution of System A -Month 1 3-10
3 Evolution of System A - Month 2 3-11
4 Evolution of System A - Month 3 3-12
5 System A Lifecycle Software Volatility 3-13
6 Hypothetical Idealized Stable System 3-32
7a Lifetime Volatility System 7 - Periodicity 3-33
7b Lifetime Volatility System 7 - Amplitude 3-33
7c Lifetime Volatility System 7 - Deviation 3-34
8a Lifetime Volatility System 23 - Periodicity 3-35
8b Lifetime Volatility System 23 - Amplitude 3-35
8c Lifetime Volatility System 23 - Deviation 3-36

Chapter 4
1 Antecedent of Software Volatility 4-8
2 Predictive Model for Periodicity 4-19

Chapter 5
1 Model of Predictors of Maintenance Outcomes 5-12

Appendix B
1 Portion of a Sample Change Log B-2
2 Coding Flowchart B-4, B
3 Labeling Year-Month by Maintenance Activity B-8
4 Chronological Vector of Maintenance Activities B-10
5 Phase Map From Figure 4 Sample Input Vector B-12
6 Gamma Analysis and Precedence Map B-13
7 Sample Gamma Analysis and Precedence Ordering B-17
8 Radial Graph of Volatility Gamma Analysis B-19

with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

LIST OF TABLES

Table - Title Page
Chapter 2

1 Review of Software Evolution Research 2-2
2 Descriptive / Analytical Research on the Nature of Software Evolution and 2-3

Lifecycle Maintenance
3 Laws of Software Evolution 2-4
4 Empirical Studies on Software Evolution 2-4

Chapter 3
1 Mathematical Properties of Proposed Measures 3-9
2 Evaluation of Proposed Measures 3-18
3 Correlations of NAmplitude and % of New Programs 3-25
4 Correlations of NPeriodicity and No. of Modifications 3-29
5 Correlations of NDeviation and the Coefficient of Variation 3-27
6 Correlations Supporting Discriminant Validity 3-28
7 Summary of Linear Regression Estimates for the Software Portfolio 3-30

Chapter 4
1 Antecedents of Software Volatility 4-24
2 Descriptive Statistics of Operational Variables 4-25
3 Correlations of Operational Variables 4-26
4 Regression Estimates for Drivers of Periodicity 4-27
5 Hypotheses Test Results 4-28

Chapter 5
1 Hypotheses to be Tested 5-13
2 Operational Explanatory Variables 5-17
3 Summary Statistics of Monthly Panel Data Set 5-18
4 Frequency Counts of Binary Variables - Monthly Panel 5-19
5 Summary Statistics of Quarterly Panel Data Set 5-19
6 Frequency Counts of Binary Variables - Quarterly Panel 5-19
7 Correlations for Monthly Panel Data Set 5-20
8 Correlations for Quarterly Panel Data Set 5-21
9 Prediction of Software Processing Error Rate Using Monthly Panel Data 5-22
10 Prediction of Maintenance Costs Using Quarterly Panel Data 5-23
11 Effect of System Complexity on Maintenance Outcomes 5-24
12 Effect of Lifecycle Maintenance Profiles on Maintenance Outcomes 5-25
13 Effect of Software Volatility on Maintenance Outcomes 5-26
14 Summary of Tests of Hypotheses 5-26

Chapter 6
1 Summary of Contributions 6-6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

LIST OF TABLES (coat'd)

Table - Title Page
Appendix A

1 Laws of Software Evolution A-l
2 Testing the Laws of Software Evolution A-2
3 Operational Variables A-3
4 Operational Variables and Expected Relationships A-4
Law 1 Correlation (change, age) A-4

Testing for Normal Distribution A-4
Law 2 Correlation (complexity, age) A-5

Testing for Normal Distribution A-5
Law 3 Correlation (change size, age) A-5

t-tests A-5
Law 4 Correlation (work rate, age) A-6

t-tests A-6
Law 5 Correlation (change rate/capacity, age) A-6
Law 6 Testing for Normal Distribution of Change Size A-7
Law 7 Correlation (faults, age) A-7

Testing for Normal Distribution A-7

Appendix B
1 Classification Scheme B-3
2 High/Low Indicators and Volatility Classifications B-15
3 Volatility Classification Ordering B-16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

This work is dedicated to my family for their encouragement and support of my

efforts and for their patience during completion of my thesis. I want to thank my

advisors, Dr. Slaughter and Dr. Kemerer, for their patience and determined efforts to

keep me focused on achieving my best. I want to thank the faculty and graduate students

who participate in GSIA's IS doctoral seminars for their friendly questions, constructive

criticisms and enthusiastic encouragement

This research was supported in part by the William J. Larimer Fellowship at the

Graduate School of Industrial Administration, by faculty development grants from

Carnegie Mellon University, by National Science Foundation grants CCR-9988227 and

CCR-9988315, by a Research Proposal Award from the Center for Computational

Analysis of Social and Organizational Systems, NSFIGERT, and by the University of

Pittsburgh Katz Graduate School of Business Institute for Industrial Competitiveness.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

This thesis is dedicated to my father, who knew I could do it all along.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

SOFTWARE EVOLUTION, VOLATILITY AND LIFECYCLE MAINTENANCE
PATTERNS:

A LONGITUDINAL ANALYSIS
Thesis Abstract
Evelyn Barry
April 2001

Change is a constant in our world and information systems are no exception.
Y2K. required massive software modifications and the need for change continues in the
application systems for the World Wide Web. Information systems often remain
productive for many years, yet change so dramatically that current system characteristics
no longer resemble their original implementation.

Software evolution is described as the dynamic behavior, growth and incremental
change of information systems throughout their productive lives. Even though software
maintenance represents 80% of the lifetime cost of an information system, the IS
community has little scientific knowledge explaining how information systems evolve
and the consequences of different evolutionary patterns. This work expands our
understanding of software evolution by providing quantitative measurement and analysis
of software evolution, examining its causes and its consequences.

Software evolution is characterized by software volatility and lifecycle
maintenance profiles. These traits are used to address three research questions: (I) how
can software volatility be conceptualized and measured? (2) what are the antecedents of
software volatility? and (3) are software volatility and lifecycle maintenance profiles
determinants of lifecycle maintenance outcomes?

Formal criteria are applied to rigorously define, evaluate and validate three
measures of software volatility : amplitude, periodicity and deviation. Empirical data
demonstrate the contingent, discriminant and predictive validity of these measures.

Conceptual models for die second and third questions are developed and
empirically tested to analyze the relationships of software evolution to information
systems and their lifecycle maintenance processes. Hypotheses are tested by panel
regressions based on empirical data from a detailed 20-year maintenance log of software
modifications in a portfolio of 23 information systems.

This thesis makes several contributions. A rigorous set of evaluation criteria for
software measurement is developed and applied. These analyses describe the
relationships connecting amplitude, periodicity and deviation with lifecycle maintenance
patterns, and lifecycle maintenance outcomes of processing errors and maintenance costs.
These results are strengthened by use of a unique empirical data set ten-times larger than
previous longitudinal studies o f software evolution. These new insights into software
evolutionary processes can be used to advantage by IS researchers and managers.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

INTRODUCTION
As we begin the 215' century there is a renewed interest in long-term perspectives

for many of the management practices currently in use. We have now had electronic

computers for over half a century, and with them, the added responsibility of software

management Many people were dumbfounded by the possibility of a Y2K problem.

With the rapidity of changes in information technology, how could we still be dealing

with software written in some cases more than 20 years ago?

What IS professionals have long realized, and what many others are now

beginning to understand, is that many information systems remain productive for

decades. It is estimated that the average enterprise general ledger application system in

Fortune 1000 companies is 15 years old (Kalakota and Whinston, 1996, p. 390). The

Y2K problem highlighted the continual investment required of organizations to maintain

their systems.

With the recognition that information systems are long-lived comes the necessity

to understand longitudinal changes occurring in those systems. Information systems

must continue to operate efficiently and effectively in dynamic competitive

environments. To perform at satisfactory levels, software systems must periodically be

adjusted to model changes occurring around them. Software changes may reveal errors

of omission or miscommunication, or be the result of requirements for additional

functionality. Whether these changes are done to correct flaws in existing code, adapt to

the environment, or add functionality, they are generally classified as lifecycle software

maintenance.

Software maintenance activities span a system's productive life and can consume

as much as 80% of the total effort expended on a system during its lifetime (Bennett,

l - i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

1996). While researchers recognize the importance of lifeycle maintenance activities and

their outcomes, relatively little empirical research has been conducted that examines the

type and extent of changes taking place.

The longitudinal perspective required for analysis of lifecycle maintenance leads

us to the process of software evolution. Belady and Lehman (1976) define software

evolution as “ ... the dynamic behavior of programming systems as they are maintained

and enhanced over their life times.'’ Software evolution is of increasing importance as

systems in organizations become longer-lived. We refer to those changes as lifecycle

maintenance.

environment ‘ environment "

Time

Figure 1: Software Evolution and Lifecycle Maintenance

We observe that lifecycle maintenance activities are the driving force in the

longitudinal transformations occurring within an information system. Not every

information system displays the same evolutionary changes in behavior. What accounts

for these differences? How do these differences affect lifecycle maintenance outcomes

such as processing errors and maintenance costs? Do differences in information system

behavior affect maintenance outcomes?

The evolutionary process of software change can be described by analyzing

software volatility, i.e. the amount and intensity of software change. Some software

systems are constantly undergoing major modifications and others remain untouched for

1 -2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

months and years at a time. By developing a measure of software volatility and

identifying its antecedents, we can expand our understanding of software evolution. We

use our measures of software volatility and historical patterns of lifecycle maintenance

activities to describe software evolution. We then investigate the relationship between

software evolution and software maintenance outcomes. We combine our measures of

software volatility with a detailed taxonomy of lifecycle maintenance activities to

describe software evolution. We investigate these factors to see what effect they have on

outcomes such as processing errors and maintenance costs. This research project

addresses three research questions by using a software evolutionary perspective to study

longitudinal transformations that information systems undergo during their lifetimes.

/. How can software volatility be conceptualized and measured?

2. What are the antecedents o f software volatility?

3. Using software volatility and lifecycle maintenance profiles as descriptors o f
software evolution, are the characteristics o f software evolution determinants
o f lifecycle maintenance outcomes?

These research questions now become pieces of a puzzle. As shown in Figure 2,

each research objective is one step toward painting a complete picture of the roles

lifecycle maintenance activities and software volatility play in the evolutionary

transformations that occur during the productive lives of information systems.

The next chapter presents a discussion of software evolution with a brief review

of relevant literature. The research questions are presented and empirically tested in each

of the following three chapters. The results of this research are then summarized in

Chapter 6. Additional empirical results and a detailed description of data conversion

processes are included in the appendix.

1 - 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

^ i i f i i i r t r fS r fw if VnlrtMly
competitive environment

task environment
kosic system characteristics

Figure 2: Overview of Three Research Questions

REFERENCES
Belady, L.A., and Lehman, M.M., "A Model of Large Program Development", IBM

Systems Journal. 1976, No. 3, pp. 225-252.
Bennet, Keith, "Software Evolution: Past, Present and Future", Information and Software

Technology. Nov. 1996, Vol. 39, No. 11, pp. 673-380.
Kalakota, R., and Whinstcm, A.B., Electronic Commerce: A Manager's Guide. Addison-

Wesley, Reading, MA, 1996.

I - 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 2:

LITERATURE REVIEW - SOFTWARE EVOLUTION

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

PRIOR RESEARCH ON SOFTWARE EVOLUTION
As with discussions of the evolution of biological entities, analyses of software

evolutionary processes must account for both the inherent characteristics of software

systems, and the effects of environmental influences on them. Software changes occur

for a variety of reasons. Some of these are in response to environmental changes and

some are the result of a natural growth in user expectations and functional demands

placed on the application.

Prior studies of software evolution assume information systems are open systems,

embedded in their respective organizations. Because they are open systems exchanging

information with their environment, information systems are open systems, growing and

changing during their productie lives in response to their environment. (Scott, 1992;

Morgan, 1997). A shown in Figure I embedded systems are influenced and changed by

their environment, and in turn they influence and change their environment (Lehman and

Belady, 1985; Pfleeger, 1998).

Researchers have analyzed software evolution for over three decades. (See

Tables 1 and 2) Based on a series of empirical and analytical studies, researchers,

Lehman et al., have developed eight laws of software evolution for embedded systems.

(Lehman and Belady, 1985,, et al., 1997). (See Table 3) Prior to work by FCemerer and

Slaughter (1997,1999) none of these empirical studies examined data covering more than

four years of software evolution. (See Table 4.)

Current research on software evolution is headed in a number of different

directions. As reported in a recent Workshop on Empirical Studies of Software

Development and Evolution, software evolution is providing a theoretical foundation for

2 - 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

analysis of reverse engineering technologies and new perspectives on cost estimation

tools. In addition further work is being done on the FEAST/2 (Feedback Evolution and

Software Technology) project, further investigating Lehman's eighth law of software

evolution, the Law of System Feedback (Harrison, et al., 1999).

feedback

software systemenvironment
feedback

Embedded Software System

Figure 1: Embedded Systems

Author year Title
Bennet 1996 Software Evolution: Past, Present and Future
Schneidewind 1987 The State o f Software Evolution
Kemerer 1995 Software Complexity and Software Maintenance:

A survey o f empirical research
Kemerer & Slaughter 1997 Methodologies for Performing Empirical Studies:

Report from the International Workshop on
Empirical Studies of Software Maintenance

Cote, Bourque,
Oligny & Rivard

1988 Software Metrics: An Overview o f Recent Results

Belady 1979 On Software Complexity

Table 1: Reviews of Software Evolution Research

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

www.manaraa.com

Author Year Title Dependent
variable(s)

Independent
variablefs)

Conclusion

Lehman 1998 Software’s Future: Managing
Evolution

Discussion

Lehman 1996 Feedback in the Software Feedback learning system type, benefits from innovative changes to forward path methods
Evolution Process system, success o f

forward path
innovations

software process limited by feedback occurring in software process

Brooks 1995 Mvthical Man Month general software process management techniques
Perry 1994 Dimensions o f Software

Evolution
discusses 3 dimensions: domain (real world and its
abstractions), experience (from feedback,experimenta-tion),
process (methods, technologies, organizations)

Yau, 1988 An Integrated Life-Cycle Model describes software maintenance in 4 phases and concentrates on
Nicholl, for Software Maintenance interphase relationships; describes software in terms of control
Tsai, & flow, data flow and data structure; permits analysis o f basic
Liu properties o f software system throughout life-cycle
Lehman 1984 Program Evolution software process can be studied in its environment - also

detailed discussion o f SPE classification o f systems; discussion
of step paradigm for software process

Lehman 1980 On Understanding Laws,
Evolution and Conservation in the
Large-Program Life Cycle

explain and support 5 laws o f software evolution

Wood- 1980 A Mathematical Model for the size &complexity structural work develop mathematical models expressing the laws o f software
side Evolution of Software of software,

efficiency o f
software process

effort, non-
structural work
effort, release n o ,
modules produced

evolution, gives laws internal validity

Belady 1978 Staffing Problems in Large Scale
Programming

discussion o f the type and sequence of work done in software
development, and the iterative nature o f the process

l.ehman 1977 Human Thought and Action as an
Ingredient o f System Behavior

top-down analysis o f the software process; discussion relies on
systems science

Table 2: Descriptive / Analytical Research on the Nature of Software Evolution and Lifecycle Maintenance

R
ep

ro
du

ce
d

wi
th

pe

rm
is

si
on

of

the

co
py

ri
gh

t
ow

ne
r.

Fu

rt
he

r
re

pr
od

uc
ti

on

pr
oh

ib
ite

d
w

ith
ou

t
pe

rm
is

si
on

.

www.manaraa.com

Laws of Software Evolution Description
Law of Continuous Change

Law of Increasing Entropy (later renamed Law of
Increasing Complexity)

Law of statistically smooth growth (also called the
Law of Self Regulation)

Law of invariant work rate (also called Law of
Conservation o f Organizational Stability)
Law of conservation o f familiarity

Law of continuing growth

Law o f declining quality

Law o f system feedback

Systems must continually adapt to the environment
to maintain satisfactory performance
As systems evolve they become more complex
unless work is specifically done to prevent this
breakdown in structure
The software evolution processes are self-regulating
and promote globally smooth growth of an
organization’s software
The organization’s average effective global activity
rate is invariant throughout system’s lifetime
Incremental growth rate of a system is constant to
conserve the organization’s familiarity with the
software.
Functional content o f systems must be continually
increased to maintain user satisfaction
System quality declines unless it is actively
maintained and adapted to environmental changes
Software evolutionary processes must be recognized
as multi-level, multi-loop, multi-agent feedback
systems in order to achieve system improvement.

Table 3: Laws of Software Evolution (Lehman, et al., 1997)

Author _______ Year Title__________________________ Data
Kemerer and Slaughter 1999 An Empirical Approach to

Studying Software Evolution
20 years o f software modifications
for 23 software systems

Kemerer and Slaughter 1997 Determinants o f Software
Maintenance Profiles: An
Empirical Investigation

5488 modifications in 621
software modules in five
application systems;
approximately 9 years o f software
changes

Lehman, et al. 1997 Metrics and Laws o f Software
Evolution: The Nineties View

21 releases of a financial software
package

Basili, et al. 1996 Understanding and Predicting the
Process o f Software Maintenance
Releases

25 releases of 10 different software
systems

Gefen and Schneberger 19% The Non-Homogeneous
Maintenance Periods: A Case
Study of Software Modifications

29 months o f software problem
reports

Cook and Roesch 1994 Real-Time Software Metrics 10 versions of real-time German
switching software released over
18 months

Yuen 1987 A Statistical Rationale for
Evolution Dynamics Concepts

Modules from OS 360, OMEGA,
Executive, BD, B, DOS, CCSS
systems

Yuen 1985 An Empirical Approach to the
Study of Errors in Large
Software Under Maintenance

19 months o f data for 5000
'component', 3000 KLOC

Belady and Lehman 1976 A Model o f Large Program
Development

21 user-oriented releases

Table 4: Empirical Studies of Software Evolution

2 - 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

REFERENCES

Basili, V., Briand, L., Condon, S., Kim, Y.M., Melo, W., and Valett, J., "Understanding
and Predicting the Process of Software Maintenance Releases", 18th International
Conference on Software Engineering. 1996, Berlin, Germany.

Belady, L.A., "Evolved Software for the 80's", Computer. Vol. 12, No. 2, Feb. 1979, pp.
79-82.

Bennet, K , "Software evolution: past, present and future", Information and Software
Technology. Vol. 39, No. 11, Nov. 1996, pp. 673-680

Brooks, F.J.. The Mythical Man-Month. Addison-Wesley Publishing Co., 1995.
Cook, C.R. and Roesch, A., "Read-Time Software Metrics", Journal of Systems and

Software. Mar. 1994, Vol. 24, No. 3, pp. 223-237.
Cote, V., Bourque, P., Oligny, S., Rivard, N., “Software Metrics: An Overview of Recent

Results”, The Journal of Systems and Software. Vol. 8, No. 2, March 1988, pp.
121-131.

Gefen, D., and Schneberger, S.L., "The Non-Homogeneous Maintenance Periods: A Case
Study of Software Modifications", Proceedings of the IEEE Conference on
Software Maintenance. 1996, Monterey, CA.

Harrison, R., Badoo, N. Barry, E., Biffl, S., Parra, A., Winter, B., and Wuest, J.,
"Workshop and Conference Reports: ESSDE’99 Working Group Report on
Directions and Methodologies for Empirical Software Engineering Research",
Empirical Software Engineering. December 1999, Vol. 4, No. 4, pp. 405-410.

Kemerer, C.F., "Software Complexity and Software Maintenance: A Survey o f Empirical
Research", Annals o f Software Engineering. Vol. 1, Sept. 1995, pp. 1-22.

Kemerer, C.F. and Slaughter, S. A., "Determinants of Software Maintenance Profiles: An
Empirical Investigation", Journal of Software Maintenance. Vol. 9,1997, pp. 235-
251.

Kemerer, C.F. and Slaughter, S.A., 1999, "An Empirical Approach to Studying Software
Evolution", IEEE Transactions on Software Engineering. Vol. 25, No. 4, pp. 493-
509.

Lehman, M.M.," Human Thought and Action as an Ingredient of System Behavior",
Encvlcopedia of Ignorance. R. Duncan and M. W. Smith (Eds), Pergamon Press,
Oxford, 1977.

Lehman, M.M., "On Understanding Laws, Evolution and Conservation in the Large
Program Life Cycle", Journal of Systems and Software. Vol. 1, No. 3,1980, pp.
213-221.

Lehman, M.M., "Program Evolution", Information Processing and Management. Vol. 20,
1984, pp. 19-36

Lehman, M.M., and Belady, L.A., Program Evolution: Processes of Software Change
Academic Press, London, 1985.

Lehman, M.M.. "Feedback in the Software Evolution Process", Information and Software
Technology. Vol. 39, No. 11, Nov. 1996, pp. 681-686.

2 - 5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Lehman, M.M., Ramil, J.F., Wemick, P.D., Perry, D.E. and Turski, W.M., "Metrics and
Laws of Software Evolution - The Nineties View", Metrics '97. the Fourth
International Software Metrics Symposium. 1997, Albequerque, NM

Lehman, M.M., "Software's Future: Managing Evolution", IEEE Software. January-
February, 1998, pp. 40-44.

Morgan, G., Images of Organization. Sage Publications, Thousand Oaks, CA, 1997.
Perry, D.E., "Dimensions of Software Evolution", IHEfc Conference on Software

Maintenance. 1994, IEEE.
Pfleeger, S., "The Nature of System Change”, IEEE Software. Vol. 15, No. 3, May-June

1998, pp. 87-90.
Schneidewind, N.F., "The State of Software Evolution", IEEE Transactions on Software

Engineering. Vol. 13, No. 3, March 1987, pp. 103-110.
Scott, R.W., Organizations: Rational. Natural, and Open Systems 3rd Edition, Prentice

Hall, Englewood Cliffs, NJ, 1992.
Woodside, C.M., "A Mathematical Model for the Evolution of software", Journal of

Systems and Software. Vol. 1, No. 4,1980.
Yau, S.S., Nicholl, R.A., Tsai, J., Liu, S., "An Integrated Life-Cycle Model for Software

Maintenance", IEEE Transactions on Software Engineering. Vol. 14, No. 8, Aug.
1988, pp. 1128-1144.

Yuen, C.H., "An Empirical Approach to the Study of Errors in Large Software Under
Maintenance". 2nd IEEE Conference on Software Maintenance. 1985,
Washington, D.C.

Yuen, C.H., "A Statistical Rationale for Evolution Dynamics Concepts", Proceedings of
the Conference on Software Maintenance. 1987, Austin, TX.

2- 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 3:

RESEARCH QUESTION 1 -

A MULTIDIMENSIONAL MEASUREMENT OF SOFTWARE VOLATILITY

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

1 INTRODUCTION

Everyone has heard the adage "The only thing constant is change". It is no

surprise, therefore, that change is also a constant in software systems. This is probably

more true of software systems than other phenomenon due to their often perceived ease

of change. In the software engineering community we dealt with change while working

on software modifications for Y2K, and we continue to deal with rapid changes while

supporting software for the World Wide Web. Not all software systems' change in the

same way or at the same rate. Some software systems are constantly undergoing major

modifications, while others remain untouched for months and years at a time. What

accounts for these differences and how can they be analyzed? Identification and

understanding of these differences in system evolution can lead to improved abilities to

engineer and manage software systems.

Exact definitions and measurement of research variables are essential before more

in-depth analysis can be conducted. As defined by Belady and Lehman, software

evolution is "the dynamic behavior of programming systems as they are maintained and

enhanced over their life times" (Belady and Lehman, 1976). Some researchers have

expanded this definition to concentrate on lifecycle maintenance processes, using

"evolution" as a synonym for "maintenance" or "modification" (Van Horn, 1980). This

view changes the research emphasis to examine processes people use to develop software

systems and to follow systems as they progress through iterative releases (Lehman and

Ramil, 1999).

In this study, we draw upon Belady and Lehman's original definition of software

evolution. In doing so, we re-emphasize the general systems approach to understanding

1 In this discussion system refers to a group of related programs or modules that function together toward a common
purpose. Wc refer to programs as dements of a software system. A program is a set of ordered computer commands
assembled to accomplish a specific task.

3 - 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

the nature of software systems. As in Kemerer and Slaughter (Kemerer and Slaughter,

1999), this work examines post-implementation system behavior. For over two decades

Lehman et al. (Belady and Lehman, 1976; Lehman and Belady, 1985) have postulated

and tested a series of laws of software evolution describing proposed universal aspects of

software system behavior. These laws describe software behavior as dynamic

characteristics of change, entropy, growth and quality. The Law o f Continuous Change

was among the first of these laws to be formally stated and is based on experiences of

practitioners working with hardware and software (Lehman and Belady, 1985). To

understand the dynamic behavior of individual software systems, additional research is

needed to build on descriptions of universal behavior and seek explanation and

understanding of variations in behavior (Thompson, 1967). While we recognize that all

software systems change throughout their productive lives, they do not all change in the

same way, or at the same pace. This research identifies software volatility as a dynamic

characteristic of system behavior. In so doing, this work emphasizes the longitudinal

nature of evolutionary processes allowing comparison of the variations in behavior across

systems and over time.

Key to understanding the variations in software system is the ability to measure

important characteristics of software lifecycle evolution, including software volatility. In

applying engineering discipline to the endeavor of software engineering, measurement of

work products is considered essential (Tian and Zelkowitz, 1992). This discipline should

apply to studies of software behavior as well. Hence, the objective of this research is to

define a direct measure of software volatility, evaluate the proposed measurement

function, and empirically provide evidence that the new metric can be collected.

Software volatility measures can then be used to improve our theoretical understanding of

software evolution, and to assist practitioners in managing long-lived software systems.

3 - 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Because software programs generally do not change unless someone directly

alters source code, previous measures of software volatility have concentrated on counts

of software modifications. For example, versioning is a count of new editions of a

software system, e.g. with the releases of the commercial software product MS Windows

NT each successive version number may represent different amounts of additional or

modified source code. With the versions of Windows NT implemented between 1993 and

2000, the software system grew from 6. IM to 30M lines of code (LOC) (Hamm and Port,

1999). However, there are typically irregular time intervals and changes in software size

between releases. Versioning, therefore, provides only a relatively crude measure of

changes taking place. It marks major levels of change, but fails to track the size of change

or the periodicity of change.

Using a simple count of software modifications for a measure of volatility fails to

consider how often changes occur. If two software systems have both had the same

number of modifications, but one is 2 years old and the other is 5 years old, the older

system would intuitively be considered the less volatile of the two, ceteris paribus.

However, a simple rate of software modification over time may still not adequately

describe software volatility. Consider two systems with different patterns of lifecycle

maintenance such that one system is modified at the end of each month, and the other

annually undergoes 12 modifications at one time. The two systems each change at the

rate of 12 modifications per year, yet one is in a constant state of flux, and the other

remains unchanged for 11 of every 12 months. Hence, more descriptive measures of

software volatility must include a measure of the time between source code

modifications. System size must also be considered. If two systems report 10 changes of

equal size per month, but one system has 500 programs and the other has 10 programs,

the former is intuitively less volatile.

3 - 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

We propose a 3-dimensional measure of software system volatility. The first

dimension is a measure of software change size or amplitude. The second is a measure of

how often changes occur, or periodicity. By using amplitude and periodicity, we can

describe software volatility with a smooth sine curve similar to that used to describe

physical systems, e.g. sound waves (Bueche, 1969). However, software system behavior

is unlikely to be as consistent as a physical system. A more precise measure of software

volatility will include a third dimension, a measure of how closely software volatility

follows the implied cyclical pattern. As in the studies of environmental volatility by

Wholey and Brittain (1989), we add a third dimension, deviation, to indicate how closely

system behavior follows the cyclical patterns described by periodicity. Measurements for

each of these dimensions can be calculated periodically throughout the productive life of

a software system and analyzed to describe changes in system behavior as it evolves.

In section 2 we first briefly review prior research that is relevant to the

measurement of software volatility and then formally define a 3-dimensional measure of

software system volatility. In sections 3 and 4 we evaluate these dimensional measures

and provide empirical support to validate the proposed metrics. This work contributes to

our understanding of the lifecycle transformations of software systems by maintaining a

system-level perspective while analyzing the full extent of a system's productive life

span. Software lifecycle changes have traditionally been tracked at the program level. To

more fully understand lifecycle transformations occurring at the level of software systems

a more comprehensive approach is required. Software volatility should measure multiple

aspects of the changes occurring in a software system throughout its lifecycle. A system-

level measure of software volatility can be used for descriptive analysis of system

behavior. In addition, this project lays the groundwork for building theories to explain

and predict software volatility and analyze its contribution to software product attributes

and lifecycle maintenance processes and their outcomes.

3 - 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2 A MULTI-DIMENSIONAL DEFINITION OF SOFTWARE VOLATILITY
In this section we define the attributes of software volatility and propose

measurement functions for each. In section 3 we develop a set of formal evaluation

criteria for measurement functions and assess our proposed measures. In section 4 we

provide empirical evidence of the validity of these metrics, and in sections 5 and 6 we

discuss the implications and application of these measures of software volatility

We start by clearly defining each attribute being measured. The use of a natural

language definition in addition to precise mathematical terminology is essential in

developing a consensus about what is being measured and how it should be done

Finkelstein and Leaning, 1984; Xia, 1999). For wide application and adoption of new

measures it is also important that such measures be software programming language and

technology independent (Churcher and Shepperd, 1995).

Previous empirical studies of software evolution have measured longitudinal

changes in software product attributes and compared those values at different points in

time (Banker and Slaughter, 2000). To understand the evolution of software systems and

analyze their dynamic behavior, we need to analyze characteristics of software behavior.

2.1 Pr io r Stud ies o f Vo la tility

While a number of researchers have examined the problem of measurement of

software product and software process attributes, there is little empirical research that

measures dynamic characteristics of software behavior, particularly, software volatility.

Existing studies tend to use basic counts of software modifications as a direct measure

(Banker and Slaughter, 2000). In contrast, a predictive model for the logical stability of

software is based on other software product attributes (Yau and Collofello, 1980; 1985).

In that work the dependent variable is expressed as a rating of the ripple effect, i.e. the

effect of changes in other system programs felt by the program being evaluated.

3 -5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

To develop additional perspective on software volatility we turn to other research

to see how others have measured change. Some researchers have studied other types of

volatility using counts of change incidents Snyder and Glueck, 1982; Dess and Beard,

1984; Stroh, Baumann and Reilly, 1996). Schneidewind's study of process stability

examined trends by first calculating a change metric, and then analyzing the trend

function to indirectly measure stability (Schneidewind, 1999). Li, Etzkom and Talburt

(2000) examine process instability with empirical measures of object-oriented software

evolution during the design phase.

We propose a direct measure of the multi-dimensional aspects of the volatility of

software systems. Organizational theorists Wholey and Brittain (1989) describe

environmental variation with three dimensions: amplitude, frequency and predictability

of variation. A primary premise of our work is that software systems, particularly

application systems, model their environments. As the business and technological

environment grows and changes, software systems must also change (Lehman and

Belady, 1985). This suggests that dimensional characteristics of environmental volatility

measures could be adapted to describe software volatility. We define 3 dimensions of

software volatility: amplitude, periodicity and deviation. Amplitude describes the

magnitude of change and periodicity measures the time interval between software

modifications. These two characteristics imply a smooth pattern of software

modifications. While many naturally occurring physical phenomena may be described

this way, software systems are unlikely to be so well behaved. We need a third

dimension, deviation, to describe how closely a system's behavior follows the pattern

implied by amplitude and periodicity.

2.2 AMPLITUDE

Amplitude measures the size of software modifications. Traditional measures for

3 - 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

software size include lines of code (LOC), function point counts, token counts, equivalent

size metrics, entity counts, percentages of changed programs and object-oriented methods

(Boehm, 1997; Albrecht and Gaffney, 1983; Chidamber and Kemerer, 1994).

Amplitude can be measured as the sum of the size of all modifications made to a

software system. Amplitude can be measured for each time period /, as;

•V,
Amplitudet = £ sizefmodificationj)

>■*
where N, is the number of modifications in time period t.

We can use any of the previously validated measures of software size for our

measure Amplitude!. Division of Amplitude! by the total size of the system creates a

bounded scale invariant measure. We refer to this as normalized amplitude,

NAmplitudet.2

NAmpIitudet - Amplitude!/'
(total size of software system at end of time period 0

NAmplitudet is the normalized measure of amplitude for time period t.

23 P e r i o d i c i t y

Periodicity measures time since software modifications (TSM). Manufacturing

and production researchers define Mean Time Between Failures (MTBF) as the total unit-

hours of operation divided by the total number of failures (Gaither, 1990). MTBF is

calculated as a single value for the entire product lifecycle. Studies of software reliability

find the Mean Time to Failure (MTTF) as the expected time the next software failure will

be observed (Lyu, 1995). By definition, MTBF and MTTF are concerned only with

failures or breakdowns.

* We use the term normalae to refer to a mathematical operation that eliminates units of measurement, i.e. we are
creating normalized measures to show relative measures with respect to the maximum possible value. Measures
normalized in this fashion will be scale invariant and bounded betweenO and I.

3 -7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

We are seeking a measure of the time between software modifications, regardless

of their purpose, e.g. corrective, adaptive or enhancement. Time since software

modification, TSM, is the time (measured as days, weeks, months, etc.) elapsed since the

previous modification.

TSMjt = TSM for change event j in time period t ,
where t = system age.

Periodicity is the mean TSM for a system during time period t.

•V,
Periodicity, = jr ^ T S M j t ,

' i
where Nt = total number of change events during time period t

To make comparisons of Periodicityt across systems of different ages, we

normalize Periodicity; by the number of time periods a system has been in existence at

the end of time period t. Thus, normalized Periodicity for time period t, NPeriodicityt, is

defined as:

NPeriodicityt = Periodicity; / 1.

2.4 D e v ia tio n

Deviation is the variance of the TSMj for the change events occurring in time

period t. Deviation should express the variation in both amplitude and periodicity. By

definition our measure of amplitude, NAmplitude; will vary over a software system's

lifecycle, but not within each time period t. Therefore, the variance in amplitude will not

contribute to deviation. However, periodicity, measured by TSMjt, will vary within time

period /. We define Deviation as the variance of the TSMj; (variance(TSMj);)..

Boundedness can be obtained by calculating the variance of normalized TSMJt, i.e.

NTSM; = (TSMjt)/t We refer to the normalized variance as NDeviationt.

NDeviation; = variance(NTSM;)
= variance(TSMjt/t)
= (l/t2)variance(TSMj,)

3 -8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The mathematical properties of the elements of amplitude, periodicity and

deviation are shown in Table 1.

Construct
element

6 Real Numbers,
for all j, t;

>0, for all j, t < 1, for all j, t

Amplitude Yes Yes No
Namplitude Yes Yes Yes
Periodicity Yes Yes No
NFeriodicity Yes Yes Yes
Deviation Yes Yes No
NDeviation Yes Yes Yes
Table I : Mathematical Properties of Proposed Measures

2.5 Ex a m ple Ca lc u l a tio n of So ftw ar e Volatility M e a su r e s:

We demonstrate calculation of these measures with the following hypothetical

example. Assume system A is implemented with two programs, A1 and A2. The

evolution of system A is shown in Figure 1.

Program At

Program A2

1

(r)
CalY7) O

Program A3

Pro (ram A4

a - f are change events indicating m odifications
to program s A1 and A2.

Figure 1: Evolution of System A

For purposes of this example, assume the programs in system A all use a common

programming language, and therefore lines of code (LOC) is an appropriate measure of

3 - 9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

software size. Assume Program A1 has 1000 LOC and A2 has 1500 LOC. At the end of

the first month one software modification (change event a) is made to program Al. The

modification size is 50 LOC. As shown in Figure 2, we calculate NAmplitudei =

50/2500 = 0.02, NPeriodicityi = 1.0/1.0 = 1.00, and NDeviationi = variance({ 1.0)) / 1.0

= 0 .00.

End of Month I Program size Modification size
(LOC) (LOC)

Al 1000 50
A2 1500
Total 2500 “To

Amplitude
(N Amplitude)

0.02

Periodicity
(NPeriodicity)
Deviation

1.00

(NDeviation) 0.00
Figure 2: Evolution of System A - Month 1

Modification time
since modification (in

months)
1.0

“To

At the beginning of the second month of operation program A3 is added to the

system. Program A3 has 1200 LOC. During the second month of operation (0.8 through

the month) a modification (change event b) involving 30 LOC is completed on program

Al. At the end of the second month program A2 is modified for the first time (change

event c). The modification involves 500 LOC. As shown in Figure 3, we calculate

NAmplitude: = 1730/3700 = 0.47, NPeriodicity: = mean({0.8, 2.0, 0.0}) /' 2 = 0.47, and

NDeviation: = variance({0.8,2.0,0.0}) / 22 = 0.25.

3 - 1 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

End of Month 2 Program size Modification size Modification time
(LOC) (LOC) since modification (in

months)
Al 1000 30 0.8
A2 1500 500 2.0
A3 1200 1200 0.0
Total 3700 1730 2.8

Amplitude
(NAmplitude) 0.47
Periodicity
(NPeriodicity) 0.47
Deviation
(NDeviation) 0.25
Figure 3: Evolution of System A - Month 2

Program A4 is added to the system at the beginning of month 3. Program A4 has

500 LOC. Halfway through the third month program Al was modified by a software

modification of 200 LOC (change event e). Two modifications are completed on

program A2 with 100 LOC and 50 LOC, respectively. These modifications are

completed on day 10 and day 25 of the month, respectively (change events d and f). As

shown in Figure 4, we calculate NAmplitude3 = 850/4200 = 0.20, NPeriodicity3 =

mean({0.7,0.3,0.5, 0.0})/3 = 0.125, and NDeviation3 = variance({0.7,0.3,0.5, 0.0})/32 =

0 .01.

3 - u

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

End of Month 3 Program size Modification size Modification time
(LOC) (LOC) since modification (in

months)
Al 1000 200 0.7
A2 1500 100 0.3

50 0.5
A3 1200
A4 500 500 00
Total 4200 850 1.5

Amplitude
(NAmplitude)
Periodicity
(NPeriodicity)
Deviation
(NDeviation)

0.20

0.125

0.01

Figure 4: Evolution of System A - Month 3

The three dimensional measures of volatility describe changing behavior in the

system. In this example we see that over time, amplitude is becoming larger

(NAmplitude) and periodicity (NPeriodicity) is becoming shorter. System A starts as a

"well-behaved" system with low deviation (NDeviation).

3 - 1 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Software Volatility for Example System A

1 -

0.9 f -

0.8 r

0.7 -

X -
\

\ :
A r

'NPwiodlcity r
A - NDavMBon

as

* 0.5
"5
>

0.4

2 31 month

Figure 5: System A Lifecycle Software Volatility

As summarized in Figure 5, software volatility for system A shows an increase in

amplitude between the first and second months, and a decrease between the second and

third months. Periodicity is the same in months 1 and 2, but sharply decreases in month 3.

Deviation increases slightly between the first and second month, and then decreases in

the third month. We can infer from this that modifications get larger from month I to

month 2, then decrease in size between months 2 and 3. Decreasing periodicity between

months 2 and 3 indicates that modifications are being made more frequently. An increase

in deviation between months 1 and 2 indicates that there is a wider variance in the time

intervals between modifications during the second month. Decreases in deviation, as in

month 3, indicate a reduction in variance of the length of time intervals, i.e. modifications

are being implemented at more regular intervals. Therefore, lower deviation indicates

that the intervals between program modifications are nearly equal, and system behavior is

becoming more uniform.

3-13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

In the next section we develop criteria for evaluation of the mathematical

properties of software volatility measures. These criteria are then applied to our proposed

measures. Subsequently we empirically validate the measures. We then measure

software volatility of two commercial systems and interpret their lifecycle software

behavior.

3 EVALUATION OF SOFTWARE VOLATILITY MEASURES
The prior sections introduced three software volatility metrics. These measures

should be rigorously evaluated and validated to see that they logically behave in a manner

consistent with the real world phenomena being studied. We approach this task in two

steps. First, we evaluate the measurement functions defined for amplitude, periodicity

and deviation for appropriate logical and mathematical properties. Then, we evaluate the

convergent, discriminant and predictive validity of these measures with empirical dat?

from a software portfolio of legacy systems. Logical evaluation of the measurement

functions, coupled with convergent and discriminant validity, will ensure that our

measures of amplitude, periodicity and deviation are valid in a precise sense. Predictive

validity is demonstrated empirically by the significance of these measures as explanatory

variables in a predictive model. This demonstration expands the validation of these

variables to external validity and illustrates the proposed measures' generalizability

(Rosenthal and Rosnow, 1991). We proceed with evaluation of the logical and

mathematical properties of the measurement functions for the dimensions of software

volatility.

We build our criteria from traditional measurement theory and evaluation criteria

used for other metrics (Allison, 1978; Weyuker, 1988; Chidamber and Kemerer, 1994).

We start by building a set of evaluation criteria to test our proposed measurement

functions from criteria used in previous research. Amplitude, periodicity and deviation

3 - 1 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

are characteristics used to describe software volatility. The measurement functions we

have defined are direct measures of these attributes. We have defined these measures

with natural language to build intuitive understanding of the concepts, and with

mathematical precision to reduce confusion and provide repeatable results (Finkelstein

and Leaning, 1984; Churcher and Shepperd, 1995; Schnedewind, 1992). Situational

context is important in the choice of which metrics and scales to apply Zuse and

Bollmann, 1990). As Schneidewind (1992) points out, evaluation criteria should fit the

context of intended use of the measure, and set reasonable validation criteria. We have

defined measurement functions for three attributes for software volatility. Intuitively, we

expect measures of these attributes to be non-negative, and to vary from one system to

another and throughout a system's lifecycle.

To determine the criteria we should use for evaluating measures of software

volatility, we start by listing attributes we logically expect from such measures. As with

the Goal-Question-Metric paradigm (Briand, Morasca and Basili, 1999) the criteria used

to evaluate measures of software system behavior must be relevant to our intuitive

understanding of amplitude (size) and periodicity (time). We have defined system-level

measures of software volatility. The definitions of these measures use aggregate

functions to describe lifecycle system behavior. Therefore, we need aggregate measures

that reflect combined behaviors. We defined system-level measures to allow the use of

these measures in comparing software systems of different sizes, ages and technologies.

Allison (1978) uses several criteria for evaluating the mathematical properties of

aggregate measures. Allison’s criteria include

(A-l) If all individual elements equal 0, the measure equals 0.

(A-2) If any element > 0, then the measure > 0.

3 - 1 5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

(A-3) The measure is scale invariant.

(A-4) The measure is bounded3

Allison's first two criteria are important in our evaluation. Allison developed

aggregate measures to describe system-level changes. We are defining aggregate

measures to describe changes in a system of programs. Behavior of individual software

programs must be reflected by any system-level measure. Thus, we evaluate system-

level measures to insure they will (1) be positive if any of the system elements has a

positive measure, and (2) will be zero if the measures for all system elements are zero.

The properties of (3) scale invariance and (4) boundedness are essential criteria if

software volatility measures are used to analyze lifecycle software behavior and to

compare behavior of multiple systems. Scale invariance also makes measurement

functions technology independent. This is an important characteristic for the

measurement of software behavior as it allows the flexibility of comparing measures of a

wider variety of systems and of the same system over time.

Weyucker (1988) identified 9 criteria for evaluating software complexity

measures. Although the appropriateness and completeness of these properties have been

widely debated, no specific alternative set of evaluation criteria has been proposed

(Chemiavhy and Smith, 1991; Churcher and Shepperd, 1995; Roy, 2001). We examine 3

of the 9 properties identified by Weyucker, and also used by Chidamber and Kemerer

(1994) to evaluate software complexity metrics. These are (W-l) monotonicity, (W-2)

noncoarseness and (W-3) equivalence. The other 6 criteria apply specifically to software

3 Allison (1978) used a fifth criteria, sensitivity to transfers, to see if a measure is affected by the principle
of transfers when income is shifted from one group to another. This criterion applies mainly to measures
for economic analyses and is not directly applicable here

3 - 1 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

complexity metrics and are not relevant in evaluating system-level measures of software

volatility.

The property of (W-l) monotonicity implies that the measure of a combined

system (P+Q) would be larger than the individual measures of either P or Q alone

(Weyuker, 1988). General monotonicity requires only that the measure of (P+Q) be no

less than the measures of either P or Q alone (Tian and Zelkowitz, 1992). Logically,

monotonicity would apply to absolute measures of volatility. The defined dimensional

measures are relative measures normalized against the size or age of the system.

Normalization is needed to satisfy the properties of scaled invariance and boundedness.

After two subsystems are combined and the combined measures normalized,

monotonicity requirements can no longer be applied. As discussed below, measurement

qualities of scale invariance and boundedness are important for the analysis of software

system behavior over complete life spans and across systems of varying size and age.

For the purposes of our work, these qualities are considered more relevant than

monotonicity.

We seek measures distinguishing differences in behavior between systems with

divergent behavior, i.e. a system that is never modified and one that is modified on a

daily basis. In addition, we need measures that will detect changes in lifecycle behavior,

i.e. volatility at time t may or may not be equal to volatility measured at a later time, t-n .

In contrast, if two systems are the same size and age, and both are modified at the same

time and with modifications of the same size, we expect software volatility measures for

both systems to be equivalent The definitions for Weyucker's properties (W-2)

noncoarseness and (W-3) equivalence describe these qualities.

Our fifth evaluation property (W-2) noncoarseness requires that any proposed

3 - 1 7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

metric provide variation in measurement4 More precisely, for a given measure, r\, there

exist two entities, P and Q, for which the measures of those two entities will differ, i.e.

given metric r\, 3 P, 3 Q, such that q(p) * q(Q).

Similarly, it is also important that software volatility measures exhibit a sixth

property, (W-3) equivalence. Thus, for a given measure, ti, there can exist two entities, P

and Q, with the same measure, i.e. given metric T|, 3 P 3 Q such that ri(P) = r|(Q).

We now evaluate our proposed measures of amplitude, periodicity and deviation

against these 6 evaluation criteria. Table 2 summarizes the results of this evaluation.

Anwltoide Periodicitv Deviation
NAmplitude NPeriodicity NDeviation

1. If individual elements all = 0, so TRUE TRUE TRUE
does the measure

2. If any element > 0, then the TRUE TRUE TRUE
measure > 0

3. Scale invariance and technology
indepedence

TRUE TRUE TRUE

4. Lower bound 0 0 0
Upper bound 1 1 1

S. Noncoarseness TRUE TRUE TRUE
6. Equivalence TRUE TRUE TRUE
7. Monotonicity Not

applicable
Not
applicable

Not
applicable

Table 2: Evaluation of Proposed Measures

3.1 AMPLITUDE OF SOFTWARE VOLATILITY

Evaluating amplitude measurement function NAmplitude according to our criteria

we find:

(I) If all individual elements equal 0, the measure equals 0: True - if the size of all

modifications = 0, then all NAmplitudet = 0.

4 Noncoarseness is similar to the evaluation criteria of discriminative power described by Schneidcwind (1992).

3 - 1 8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

(2) If any element > 0, then the measure > 0: True > if at least one modification size > 0,

then NAmplitudet > 0.

(3) Scale invariance and technology independence: True by definition for all normalized

measures.

(4) Boundedness: Lower Bound = 0: NAmplitudet is bounded below by 0; Upper

Bound = 1: NAmplitudet is bounded above by 1 by definition.

(5) Noncoarseness: True - Software systems are of widely varying size, as are their

modifications. NAmplitudet will vary between systems and over time.

(6) Equivalence: True - Two systems, P and Q, of the same size can receive

modifications of the same size, making by NAmplitudet of P equal to

NAmplitudet of Q.

3.2 P erio d icity o f So ft w a r e V o la tility

Evaluating periodicity measurement function NPeriodicity according to our

criteria we find:

(1) If all individual elements equal 0, the measure equals 0. True • if all TSMjt = 0, then

all Periodicityi = 0, and all NPeriodicityt = 0.

(2) If any element > 0, then the measure > O.True - if at least one TSMjt > 0, then

Periodicityt > 0, and NPeriodicityt > 0.

(3) Scale invariance and technology independence - True for all normalized measures, by

definition.

3 - 1 9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

(4) Boundedness: Lower Bound - Periodicityt and NPeriodicityt are bounded below by 0

because all elements are non-negative real numbers: Upper Bound - Periodicity,

is bounded above by t; NPeriodicity, is bounded above by 1; NPeriodicity, =

Periodicity, It; Upper bound of NPeriodicity, = t/t = 1;

(5) Noncoarseness - True. Example: two systems, P and Q, are initially implemented on

the same day. Each receives one modification. P is modified on the 15th day of

its first month of operation and system Q is modified on the 20th day of its first

month of operation. NPeriodicity, for P is 0.5 and NPeriodicity, for Q is 0.67.

NPeriodicity, will vary between systems and over time.

(6) Equivalence - True - Two system, P and Q, are initially implemented on the same

day. Each receives one modification on the same day. NPeriodicity, for P will be

equivalent to NPeriodicity, for Q.

3 J Deviatio n o f So ft w a r e V o la tility

Evaluating deviation measurement function NDeviation, according to our criteria

we find:

(1) If all individual elements equal 0, the measure equals 0. True

(2) If any element > 0, then the measure > 0. True

(3) Scale invariance and technology independence * True for all normalized measures by

definition.

(4) Boundedness - Lower Bound: by definition, variance and NDeviation, are bounded by

0. - Upper Bound: by definition, NDeviation, is bounded above by 1.

3 - 2 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

(5) Noncoarseness: True - Two systems, P and Q, are initially implemented on the same

day. Each receives one modification. P is modified on the 15th day of its first

month of operation and system Q is twice, once on the 10th day of the month and

once on the 15th day of its first month of operation. NDeviationt for P is 0.0 and

NDeviation(for Q is 0.56. NDeviationt will vary between systems and across

time.

(6) Equivalence - True - Two system, P and Q, are initially implemented on the same

day. Each receives one modification on the same day. NDeviationt for both P

and Q is 0.0.

Therefore, our defined measures for amplitude, periodicity and deviation satisfy

these 6 evaluation criteria In section 4 we now proceed to empirically validate these

measures. We use empirical data from a longitudinal record of modifications to a

software portfolio to test for convergent and discriminant validity. In section 5 we then

illustrate predictive validity with a regression of software complexity against our

proposed measures.

4 RESULTS FROM EMPIRICAL EVALUATION

4.1 Establish ing V alidation C riteria

The measurement functions for the amplitude, periodicity and deviation of

software volatility should now be evaluated empirically to establish external validity.

There is no established set of universally accepted validation criteria for software metrics.

As with evaluation criteria for the mathematical properties of software metrics, we now

review some of the validation criteria used by other researchers examining software

metrics.

Basically, a measure is valid if it accurately characterizes the attribute it claims to

3-21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

measure (Schneiidewind, 1992). Statistical validation of new measures is established by

setting validation criteria, identifying appropriate statistical tests with confidence level a,

and performing the appropriate tests. It is important to recognize that any particular

metric may be valid with respect to certain criteria and invalid with respect to others

(Schneidewind, 1992). Validation criteria used for testing new metrics must be relevant

to the characteristics being measured.

It is important to consider both the statistical significance of the relationship and

the degree of the association between the variables being analyzed (Baroudi and

Orlikowski, 1989; Emam and Birk, 2000). We consider a correlation weak if it is

statistically insignificant (p > 0.05) or has a low correlation (I correlation I < 0.40 and

strong correlation in the inverse is true.5

There are several types of external validity that may be addressed. This work

examines three in particular, convergent validity, discriminant validity and predictive

validity. Convergent validity is established by demonstrating a correlation between our

new measure and a comparable measure of the same property. Discriminant validity

demonstrates independence among the three measures of software volatility. By

demonstrating the orthogonality of these measures, discriminant validity shows these

measures describe three separate dimensions of software volatility. The criteria for

establishing discriminant validity is to show weak correlations of each dimensional

measure with each of the other two. Predictive validity can be demonstrated by testing

predictive models and obtaining a strong correlation coefficient between independent and

dependent variables (Emam and Birk, 2000; Brand, Morasca and Basili, 1999).

5 The cut-off value for strong conditions (0.40) is somewhat lower than a 0.50 level that might be established for
condition coefficients when testing predictive validity (Donaldson and Weymark, 1980). In this case we seek to
establish the existence of meaningful relationships between our measures of amplitude, periodicity and deviation and
other comparable measures for those same concepts. Because the comparable measures we have used for convergent
validation of periodicity and deviation are not bounded above, the assodation between our measures and those

3 - 2 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4.2 E m pir ic a l Va lida tio n o f Pr o po sed So ft w a r e Vo la tility M easures

In this analysts we use empirical data obtained from a large mid-Westem retailer

with a portfolio of 23 legacy systems, including more than 3,500 programs. Over the

course of the portfolio’s 20-year history, software maintainers kept a detailed log of every

modification to each program by recording implementation date, purpose, type of change

and programmer responsible (Kemerer and Slaughter, 1999). The combined maintenance

logs for the portfolio provide researchers with the raw data for detailed information of

approximately 25,000 individual software modifications.

Convergent validity is supported by substantial correlation with conceptually

similar metrics (Rosenthal and Rosnow, 1991). We demonstrate convergent validity of

our measures of software volatility by calculating our 3-dimensional measures and any

logically comparable measures of amplitude, periodicity and deviation for each system

and comparing the correlation between each measure and its counterpart.

The irony of this comparison is that should completely satisfactory alternate

measures exist, we would not be defining new ones. In each case, we have identified a

comparable measure that should logically behave in a manner consistent with the

constructed measurement functions we have introduced despite its other potential flaws.

A comparable system-level measure for amplitude is the percentage of new programs in

the system. Percentage of new programs is a coarser measure than NAmplitude.

Percentage of new programs assumes that each program added is the same size as all

programs in the system. As we are comparing the proportional change in size of the

system with the proportional amount of modified code in the system, these two measures

should behave similarly. Periodicity can be measured by the inverse of number of

changes per time period. The correlation of NPeriodicityt and the number of

comparable measures will be weakened. Still we seek the strongest relationship possible, m an effort to define new
measurement functions for these phenomena,

3-23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

modifications per time period can lie used to support convergent validity. Number of

modifications per time period is a coarser measure of activity in the system. Its reciprocal

will give an average of time between modifications for the period.6 However, number of

modifications per time period is not bounded above, as is NPeriodicityt. This difference

in the basic properties of NPeriodicityt and its comparable measure will weaken the

strength of their association. However, analysis of the correlations between them should

still be sufficient to provide evidence of convergent validity of NPeriodicity,. Coefficient

of variation measure is logically comparable to our proposed measure of deviation.7

Coefficient of variation for the TSM of a system during each time period t should provide

an alternative measure for the degree of variance in the time intervals between

modifications. However, coefficient of variation is not bounded above. This difference

in the basic properties of our measure of deviation, NDeviation, and its comparable

measure will weaken the strength of their association.

These comparable measures are not suitable substitutes for the measures we have

defined. In each case these comparable measures fail at least one of the logical and

mathematical evaluation criteria. However, they are useful in order to demonstrate

convergent validity of our measures of software volatility by calculating our 3-

dimensional measures and their logically comparable measures of amplitude, periodicity

and deviation for each system and comparing the correlations between each measure and

its counterpart.

Table 3 shows the correlation of our measure of NAmplitude and its comparable

measure, the percentage of new programs in the system. The portfolio's 23 systems all

show these measures to be strongly correlated with statistically significant correlations (p

< 0.05) of magnitude > 0.40, supporting convergent validity for NAmplitude as a

6 This is similar to the calculation of MTBF that is based on the number of failures occurring over the full lifespan of
the system (Gaither, 1990).

3 - 2 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

measure of amplitude.

System Lifespan
(months)

Correlation(NAmplitude,
% new programs)

p-value

System 1 96 0.8984 0.0000
System 2 201 0.9062 0.0000
System 3 89 0.9662 0.0000
System 4 69 0.9939 0.0000
System 5 235 0.9154 0.0000
System 6 223 0.9219 0.0000
System 7 85 0.9249 0.0000
System 8 234 0.9084 0.0000
System 9 96 0.9918 0.0000
System 10 246 0.9463 0.0000
System 11 62 0.9931 0.0000
System 12 122 0.9755 0.0000
System 13 87 0.9788 0.0000
System 14 189 0.8761 0.0000
System 15 137 0.9481 0.0000
System 16 125 0.9719 0.0000
System 17 73 0.9648 0.0000
System 18 120 0.9805 0.0000
System 19 66 0.9771 0.0000
System 20 195 0.9888 0.0000
System 21 110 0.9925 0.0000
System 22 212 0.9915 0.0000
System 23 129 0.9752 0.0000
Table 3: Correlations NAmplitude and % of New Programs

Table 3 lists the correlations of periodicity measured by NPeriodicity and its

comparable measure, the number of modifications each time period. Twenty-one of the

23 systems show statistically significant correlations (p < 0.05) with eleven strong

correlations of magnitude > 0.40. These empirical results provide support for the

convergent validity of NPeriodicity as a measure of periodicity.

7 Coefficient of variation is a measure of dispersion (Dess and Beard. 1984).

3 -25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

System Lifespan
(months)

Correlation(NPeriodicity,
Number of modifications)

p-value

System 1 96 -0.3555 0.0004
System 2 201 -0.6005 0.0000
System 3 89 -0.0587 0.5848
System 4 69 -0.5077 0.0000
System 5 235 -0.3381 0.0000
System 6 223 -0.5545 0.0000
System 7 85 -0.5462 0.0000
System 8 234 -0.5545 0.0000
System 9 96 -0.5685 0.0000
System 10 246 -0.5788 0.0000
System 11 62 -0.3966 0.0014
System 12 122 -0.2753 0.0022
System 13 87 0.1297 0.2312
System 14 189 -0.4780 0.0000
System 15 137 -0.2796 0.0009
System 16 125 0.1876 0.0362
System 17 73 -0.1598 0.1769
System 18 120 -0.3672 0.0000
System 19 66 -0.5201 0.0000
System 20 195 -0.4065 0.0000
System 21 110 -0.8368 0.0000
System 22 212 -0.3576 0.0000
System 23 129 -0.1838 0.0371
Table 4: Correlations of NPeriodicity and Number of Modifications

Table 5 shows that twenty of the portfolio's 23 systems have statistically

significant correlations between deviation measured by NDeviation and its comparable

measure, coefficient of variation. Twelve of the 23 systems show strong correlations

with pair-wise correlations of magnitude greater than or equal to 0.40. These results

provide support for convergent validity of NDeviation as a measure of deviation.

3 - 2 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

System Lifespan
(months)

Correlation(NDeviation,
Coefficient of Variation)

p-value

System 1 96 0.3528 0.0004
System 2 201 0.1717 0.0148
System 3 89 0.4264 0.0000
System 4 69 0.7159 0.0000
System S 235 0.4100 0.0000
System 6 223 0.4391 0.0000
System 7 85 0.1574 0.1502
System 8 234 0.2065 0.0015
System 9 96 0.5521 0.0000
System 10 246 0.1626 0.0106
Svstem 11 62 0.4769 0.0001
System 12 122 0.3545 0.0001
System 13 87 0.3073 0.0038
System 14 189 0.4525 0.0000
System IS 137 0.2281 0.0074
System 16 125 0.1722 0.0549
System 17 73 0.4707 0.0000
System 18 120 0.3851 0.0000
System 19 66 0.4953 0.0000
System 20 195 0.4590 0.0000
System 21 110 0.9559 0.0000
System 22 212 0.5822 0.0000
System 23
Table 5: Co

129
(relations of N

0.2644
Deviation and the Coefficient o

0.0025
f Variation

Discriminant validity is supported by a lack of correlation between conceptually

unrelated measures (Rosenthal and Rosnow, 1991). Discriminant validity among

amplitude, periodicity and deviation is demonstrated by weak correlations among

NAmplitudet, NPeriodicityt and NDeviationt.

Correlations among the measures of amplitude, periodicity and deviation are

calculated for each month in the lifecycles of the portfolio's 23 systems (Table 6). In

nineteen systems there are weak correlations between NAmplitudet and NPeriodicityt (10

3-27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

were statistically insignificant and nine others had I correlation I < 0.40). Twenty-two

systems show weak correlations between NPeriodicityt and NDeviationt (thirteen were

statistically insignificant and nine others had I correlation I < 0.40). All 23 systems have

weak correlations between NAmplitudet and NDeviationt (22 were statistically

insignificant and one other had I correlation [< 0.40). Thus, these data support

discriminant validity among these dimensions.

System Lifespan
(months)

Corr(NAmp!itude,
NPeriodicity) |
p-value

CORR(NAMPLIT
UDE,
^DEVIATION) |
p-value

Corr(NPeriodicity,
NDeviation) |
p-value

System 1 96 -0.1677 i (0.1024) 0.05521(0.5931) 0.0157! (0.8794)
System 2 201 -0.3222 I (0.0000) -0.00791(0.9111) -0.0517 (0.4662)
System 3 89 -0.15261(0.1535) -0.0269 | (0.8025) 0.13941(0.1926)
System 4 69 -0.4731 (0.0000) 0.06201(0.6131) -0.27501 (0.0222)
System 5 235 -0.21621 (0.0008) -0.01261(0.8471) -0.15331(0.0187)
System 6 223 -0.29771 (0.0000) 0.1540 (0.0215) -0.1803 (0.0069)
System 7 85 -0.6191 | (0.0000) -0.0097 (0.9301) -0.2673 | (0.0134)
System 8 234 -0.2352 (0.0003) -0.0234 | (0.7216) -0.1065 (0.1042)
System 9 96 -0.4702 I (0.0000) -0.0106 I (0.9185) -0.19541(0.0564)
System 10 246 -0.2405 (0.0001) 0.01271 (0.8423) -0.0464 | (0.4691)
System 11 62 -0.1459 I (0.2577) -0.03441 (0.7909) -0.0724 | (0.5760)
System 12 122 -0.14861(0.1024) -0.0786 | (0.3897) -0.00271 (0.9761)
System 13 87 -0.1831 | (0.0897) -0.0935 I (0.3891) 0.2052 | (0.0566)
System 14 189 -0.23771 (0.0010) -0.0452 I (0.5368) -0.28131(0.0001)
System 15 137 -0.15521(0.0702) -0.12831(0.1352) -0.12821(0.1355)
System 16 125 -0.1712 I (0.0563) 0.0093 I (0.9180) 0.7901 I (0.0000)
System 17 73 -0.1563 (0.1867) 0.0200 (0.8664) 0.0065 | (0.9563)
System 18 120 -0.14241 (0.1207) -0.13581(0.1390) -0.1041 1(0.2578)
System 19 66 -0.35971 (0.0030) -0.03101 (0.8046) -0.3224 | (0.0083)
System 20 195 -0.1963 I (0.0060) -0.0436 | (0.5448) -0.2422 | (0.0006)
System 21 110 -0.5483 I (0.0000) -0.0123 I (0.8984) -0.2548 | (0.0072)
System 22 212 -0.26941 (0.0001) -0 0073 1 (0.9154) -0.17261(0.0119)
System 23 129 -0.14891 (0.0921) -U.0349 | (0.6947) -0.0155 I (0.8617)
Table 6: Correlations Supporting Discriminant Validity

In summary, the new measures have been evaluated for the mathematical

properties we desire for aggregate measures of size and time. The empirical data support

3 - 2 8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

convergent and discriminant validity. Convergent validity tells us that these measures

behave in a manner consistent with other logically comparable measures. Discriminant

validity demonstrates that these three measures describe three different attributes of

software volatility. We now illustrate the relationship between these measures and a

traditional measure of a software characteristic, software complexity. By using a simple

predictive model we test a multivariate regression of software complexity against lagged

terms for amplitude, periodicity and deviation.

43 P r e d ic t iv e V a l id i t y

Predictive validity is established by determining the degree to which a trait or

characteristic can predict future outcomes. To demonstrate the predictive validity of

software volatility, we use a simple model for software complexity. We posit that

software volatility in a previous time period will significantly affect software complexity

in the current time period. Banker, Davis and Slaughter (1998) propose and support a

model demonstrating the link between software maintenance processes and complexity.

They show that maintenance activity results in increased levels of software complexity.

In the same manner, we posit that increased software volatility from software

modifications will result in increased software complexity. Our model uses the lagged

software volatility dimensions of amplitudet-i, periodicity,.i and deviationt.i as

explanatory variables.

complexity, = + ̂ a m p litu d e + fi2penodicity,_{ + /?3 deviation, A +e,

Software system complexity,, normalized by total system size,, is the dependent

variable. There are a number of software complexity metrics available (Cook and

Roesch, 1994; Harrison, 1990; Pressman, 1992). We ran empirical tests for this model

3 - 2 9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

using six different standard complexity metrics.8 In each case, the total system size

measured in lines of code was used to control for system size and allow comparison of

results between systems.9 Coefficients for the explanatory variables were estimated using

ordinary least squares estimation procedures. The multivariate regression was estimated

for each of the 23 systems, for each of the 6 normalized complexity metrics. In total we

estimated 138 equations for our proposed measures of amplitude, periodicity and

deviation, and 138 equations for the comparable measures of those same attributes.

The adjusted R2 for two-thirds of the estimated 138 regressions using our

proposed measures was greater than or equal to the adjusted R2 for the corresponding

estimates using the comparable measures. As one would expect, using software volatility

to predict software complexity is more significant for more volatile systems.

Summarized results of these estimated regressions are summarized in Table 7.

Software Complexity Metric:
Predictive Validity

Average R squared Average R squared
(proposed measures) (comparable measures)

McCabe’s 0.2646 > 0.2003
Halstead’s nl 0.3530 > 0.2798
Halstead’s n2 0.3478 > 0.2668
Halstead’s Nl 0.2803 > 0.1910
Halstead's N2 0.3160 > 0.2255
Calb 0.3694 > 0.2719
Table 7: Summary of Linear Regression Estimates for the Software Portfolio

Our results show no significant multicollinearity among the measures for

amplitude, periodicity and deviation. Low mean Variance Inflation Factors, VIF,

indicate a lack of multicollinearity among explanatory variables (Belsley, Kuh and

Welsch, 1980). This provides further confirmation of the independence of amplitude,

periodicity and deviation as unique dimensions of software volatility.

* These measures are McCabe's cyclometric measure, Halstead's primitive measures nl,n2,Nl and N2, and the number
of calls (Cook and Rocsch. 1994; Hamson, 1990). Each was normalized by the total system LOC at timer.

3 -30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

In summary, the three proposed measures (1) improve on standard existing

measures in explaining variance of standard software complexity measures and (2)

provide support for predictive validity.

5 DISCUSSION

How can managers use these dimensional measures of software volatility to

interpret changes in lifecycle system behavior? We start with a graphical representation

of amplitude, periodicity and deviation for an idealized completely stable system. Using

the measurement function for amplitude, by definition NAmplitude, = 0 for each time

period t when no software change events occur. Given the measurement function

NPeriodicityt, as the number of software change events in time period t approaches 0, the

limit of NPeriodicityt = 1. Hence, NPeriodicityt = 1 for any time period / in which no

software change events occur. Given the measurement function NDeviationt, as the

number of software change events in time period t approaches 0, the limit of NDeviationt

= 0, i.e. NDeviationt = 0 for any time period t in which no software change events occur.

Hence, NDeviationt = 0 when no modifications occur in time period t. If there are no

software modifications in any time period throughout the productive life span of an

idealized stable system, NAmplitudet = 0, NPeriodicityt = 1 and NDeviationt = 0, for all t.

The software volatility for the lifecycle of a hypothetical idealized stable system would

be graphed as in Figure 6.

9 All programs m each system were written in the same language (Jeffrey and Lawrence. 1979).

3-31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

iriodlcity

I* 0.6 -

1 02 ' N Amplitude
N Deviation0 ^

0 12 24 36 46 60

application system age (in months)

Figure 6: Hypothetical Idealized Stable System

We compare this idealized stable system with two actual systems in our portfolio.

System 7 appears to be fairly stable throughout its more than seven year life span. There

were two brief periods of volatility. The first one occurred when system 7 was about

eighteen months old. Amplitude increased to 0.2 and periodicity became short. The

second period of volatility occurred when system 7 was between 65 and 70 months old.

Periodicity fell and amplitude increased indicating more frequent and larger

modifications. Deviation increased indicating that some programs in the system were

changing frequently and others were not (See Figures 7a, b and c.)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 - 3 2

www.manaraa.com

System 7 Periodicity

_0 2 <& 20 40 60 80 100

APPLICATION AGE

Figure 7a: Lifetime Volatility System 7 - Periodicity

S ystem 7 A m plitude

1.2 ~
1 <

0.8 - t
0.6 |
0.4

f i t
0.2 -

fi —< - 1___________ 1U
, -0.2 0 20 40 60

APPLICATION AGE

■ ■ ■ 9 --
80 100

Figure 7b: Lifetime Volatility System 7 - Amplitude

3-33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

System 7 Deviation

0.014 -
0.012 -

0.01 i
0.008 -!
0.006 -
0.004 -
0.002

0 «
-0.002 0 20 40 60

APPLICATION AGE

80 100

Figure7c: Lifetime Volatility System 7 - Deviation

System 23 appears to be relatively stable for only the first 18 months of its

productive life. Starting at approximately 18 months of age the system became volatile

with frequent, relatively small software changes for the rest of its more than 10 year life

span. Inconsistency of behavior between programs in system 23 is indicated by deviation

measured by NDeviationt > 0 (See Figures 8a b and c.)'°

10 When amplitude, periodicity and deviation are plotted on the same graphical scale, changes in deviation are difficult
to see. Even though all three are bounded bvO and 1, the magnitude of deviation as defined tends to be much smaller
than the other two.

3 -3 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

System 23 Periodicity

1.2 -

1 *
0.8 -j

0.6 4

^ 2 0 20 40 60 80 100 120 140

APPLICATION AGE

Figure 8a: Lifetime Volatility System 23 - Periodicity

System 23 Amplitude

1.2 -

1 <
o.8
0.6 -

0.4 -

0.2 -

0 - h

- 0.2 0 20 40 60 80 100 120 140

APPLICATION AGE

Figure 8b: Lifetime Volatility System 23 - Amplitude

3-35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

System 23 Deviation

0.1 -

0.08 -

0.06 -

0.04 -

0.02 -

0 4
-0.02 °

Figure 8c: Lifetime Volatility System 23 - Deviation

We observe that lifecycle maintenance activity started about eighteen months

after initial system implementation. Software managers can compare the behavior

patterns of system 7 and system 23, and conclude that system 23 will require more

constant levels of maintenance support while system 7 requires infrequent support This

information can be useful for resource planning both in the short term, e.g. budgeting

system support resources, and in the long term, e.g. as input to the "repair or replace"

decision for an application system.

6 SUMMARY

The definition, evaluation and validation of a new system-level measure of

software volatility contribute to the collective theory base for software evolution. A

system-level multi-dimensional measure of software volatility makes it possible to

develop a more complete picture of lifecycle software behavior. By presenting a multi­

dimensional measure of software volatility, software system change processes can be

analyzed concurrently for the amplitude, periodicity and deviation of software volatility.

We defined three measures describing these different attributes o f software volatility in

3-36

40 60 80 100

APPLICATION AGE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

order to facilitate its description as a dynamic behavior of software systems. By

rigorously evaluating these measures, we establish a set of criteria for evaluation of

software volatility measures. Evaluation criteria were developed from measurement

literature and applied against our proposed measures. The proposed measures were then

validated for convergent and discriminant validity. Their usefulness as predictors was

demonstrated with a regression of complexity against lagged values of amplitude,

periodicity and deviation. This multi-dimensional system-level software volatility

measure provides technology independent measures that allow comparison of system

behavioral changes over time and across systems. Interpretation of lifecycle volatility

was demonstrated with empirical data for two software systems.

This work can be expanded by analyzing software volatility in a number of ways.

The development of these direct, objective measures lays the groundwork for

development of theoretical models of software system behavior. Theoretical models of

the factors contributing to software volatility can be built and tested with parametric

methods for regression analysis. Analyses can be used to build and test models of the

drivers of software volatility and examination of the effects of software volatility on

lifecycle software maintenance outcomes such as costs and errors.

3 - 3 7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

REFERENCES
Albrecht, A.J., and Gaffney, J.E., Jr., “Software Function, Source Lines of Code, and

Development Effort Prediction: A Software Science Validation”, TFF.F.
Transactions on Software Engineering, vol. 9, no. 6, pp. 639-648, Nov. 1983.

Allison, P.D., "Measures of Inequality", American Sociological Review, vol. 43, pp. 865-
880, Dec. 1978.

Banker, R.D. and Slaughter, S. A., "The Moderating Effects of Structure on Volatility and
Complexity in Software Enhancement", Information Systems Research, vol. 11,
no. 3, pp. 219-240, Sept. 2000.

Baroudi, J.J. and Orlikowski, W.J., "The Problem of Statistical Power in MIS Research",
MIS Quarterly, pp. 87-105, Mar. 1989.

Blady, L.A. and Lehman, MM., "A Model of Large Program Development", IBM
Systems Journal, no. 3, pp. 225-252, 1976.

Belsley, D. A., Kuh, E., and Welsch, R.E., Regression Diagnostics: Identifying
Influential Data and Sources of Collinearitv. John Wiley and Sons, 1980.

Boehm, B.W., "Software Engineering Economics", Software Project Management:
Readings and Cases. C.F. Kemerer (Ed.), R. D. Irwin/McGraw-Hill, 1997.

Briand, L., Morasca, S., and Basili, V.R., "Defining and Validating Measures for Object-
Based High-Level Design", IEEE Transactions on Software Engineering, vol. 25,
no. 5, pp. 722-743, Sept/Oct 1999.

Buecbe, F., Introduction to Phvsics for Scientists and Engineers. McGraw-Hill, 1969.

Cherniavsky, J.C. and Smith, C.H., "On Weyucker’s Axioms for Software Complexity
Measures", IEEE Transactions on Software Engineering, vol. 16, no. 6, pp. 636-
638, June 1991.

Chidamber S.R. Chidamber and C.F. Kemerer, "A Metrics Suite for Object Oriented
Design", IEEE Transactions on Software Engineering, vol. 20, no. 6, pp. 476-493,
June 1994.

Churcher, N.I., and Shepperd, M.J., "Comments on 'A Metrics Suite for Object-Oriented
Design'", IEEE Transactions on Software Engineering, vol. 21, no. 3, pp. 263-
265, March 1995.

Cook, C.R. and Roesch, A., ”:Real-time Software Metrics", Journal of Systems and
Software, vol. 24, no. 3, pp. 223-237, 1994.

Dess, G.G. and Beard, D.W., "Dimensions of Organizational Environments",
Administrative Science Quarterly, vol. 29, pp. 52-73,1984.

Donaldson, D., and Weymark, J.A., "A Single-Parameter Generalization of the Gini
Indices of Inequality”, Journal of Economic Theory, vol. 22, pp. 67-86,1980.

Emam, K. El, and Birk, A , "Validating the ISO/IEC 15504 Measure of Software
Requirements Analysis Process Capability", IEEE Transactions on Software
Engineering, vol. 26, no. 6, pp. 541-566, June 2000.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Finkelstein, L., and Leaning, M.S., "A Review of the Fundamental Concepts of
Measurement”, Measurement vol. 2, no. 1, pp. 25-34, Jan.-Mar. 1984.

Gaither, N., Production And Operations Management: A Problem-Solving and Decision-
Making Approach. 4th Edition. The Drvden Press. 1990.

Hamm, S., and Port, O., “The Mother of All Software Projects”, Business Week.
February 22, 1999, pp. 69-76.

Harrison, W., "Using Metrics to Allocate Testing Resources in a Resource Constrained
Environment", Portland State University Department of Computer Science, 1990.

Jeffrey, D R., and Lawrence, M.J., "An Inter-Organizational Comparison of
Programming Productivity", Proceedings of the 4th International Conference on
Software Engineering. 1979.

Kemerer, C.F. and Slaughter, S.A, "An Empirical Approach to Studying Software
Evolution", IEEE Transactions on Software Engineering, vol. 25, no. 4, pp.1-17,
1999.

Lehman, M.M., and Belady, L.A, Program Evolution: Processes of Software Change.
Academic Press, 1985.

Lehman, M.M., and Ramil, J.F., "The Impact of Feedback in the Global Software
Process", The Journal of Systems and Software, vol. 46, no. 2-3, pp. 123-134,
April 15,1999.

Li, W., Etzkom, L., Davis, C. and Talburt, J., "An Empirical Study of Object-Oriented
System Evolution", Information and Software Technology, vol. 42, no. 6, pp.
373-381, April 15,2000.

Lyu, M.R., Handbook of Software Reliability Engineering. IEEE Computer Society
Press, 1995.

Pressman, R.S., Software Engineering: A Practitioner's Approach. 3rd Edition, McGraw
Hill, 1992.

Rosenthal, R. and Rosnow, R.L., Essentials of Behavioral Research: Methods and Data
Analysis. 2nd Edition, McGraw-Hill, Inc., 1991.

Roy, Gursaran and Gurdev, On the Applicability of Weyuker Property 9 to Objet-
Oriented Structural Inheritance Complexity Metrics, IEEE Transactions on
Software Engineering, vol. 27, no. 4, pp. 381-384, April 2001.

Schnedewind, N.F., "Methodology for Validating Software Metrics", IEEE Transactions
on Software Engineering, vol. 17, pp. 253-266,1992.

Schnedewind, N.F., "Measuring and Evaluating Process Using Reliability, Risk, and Test
Metrics", IEEE Transactions on Software Engineering, vol. 25, no. 4, pp. 769-
781,Nov./Dec. 1999.

Snyder, N.H., and Glueck, W.F., "Can Environmental Volatility be Measured
Objectively?", Academy of Management Journal, vol. 25, pp. 185-192,1982.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Stroh, L., Baumann, B J., and Reilly, A., "Agency Theory and Variable Pay
Compensation Strategies", Academy of Management Journal, vol. 39, no. 2, pp.
751-767,1996.

Thompson, J.D., Organizations in Action. McGraw Hill Book Company, 1967.
Tian, J., and Zelkowitz, M.V., "A Formal Program Complexi ty Model and Its

Application", Journal of Systems and Software, vol. 17, pp. 253-266,1992.
Weyuker, E., "Evaluating Software Complexity Measures", TFEF Transactions on

Software Engineering, vol. 14, pp. 1357-1365, 1988.

Wholey, D R. and Brittain, J., "Characterizing Environmental Variation", Academy of
Management Journal, vol. 32, no. 4, pp. 867-882,1989.

Van Horn, E.C., "Software Must Evolve", Software Engineering, vol. 1, H. Freeman and
P.M. Lewis, (Eds.), Academic Press, 1980.

Xia, F. Xia, "Look Before You Leap: On Some Fundamental Issues in Software
Engineering Research", Information and Software Technology, vol. 41, no. 10,
pp. 661-672, 1999.

Yau, S.S. and Collofello, J., "Some Stability Measures for Software Maintenance", IEEE
Transactions on Software Engineering, vol. 6, no. 11, pp. 545+, Nov. 1980.

Yau, S.S. and Collofello, J., "Design Stability Measures for Software Maintenance”,
IEEE Transactions on Software Engineering, vol. 11, no. 9, pp. 849-856, Sept
1985.

Zuse, H., and Bollmann, M.P., "Software Metrics: Using Measurement Theory to
Describe the Properties and Scales of Static Software Complexity Measures",
SIGPLAN Notices, vol. 24, no. 8, pp. 23-33, 1990.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHATER 4:

RESEARCH QUESTION 2 •

ANTECEDENTS OF SOFTWARE VOLATILITY

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

INTRODUCTION

"Why do we have to keep fixing this software? Why can't you write a good

system so we won't need these constant changes?" Most software managers have heard

these comments from their users. The truth is that change is a constant in our world and

information systems are no exception. Because they are embedded in their respective

organizations, information systems affect, and are affected by, the organizations they

serve (Lehman and Belady 198S; Pfleeger, 1998). Organizations must make constant

adjustments to survive in a habitually changing competitive environment (Porter, 1980;

Davis and Olson, 1985; Morgan, 1997). Information systems must also evolve to provide

the information their organizations need to remain competitive. Because information

systems must provide required information in a timely and accurate manner to the people

and organizations that need it, the systems must constantly be maintained and enhanced

to satisfy the information requirements of a perpetually changing organization.

Even facing these constant changes, many systems operate productively for

decades. It is estimated that the average age for enterprise general ledger application

systems in Fortune 1000 companies is 15 years old (Kalakota and Whinston, 1996).

Some information systems change a great deal during their productive lifespans,

and others remain unchanged for months and years at a time. Does this automatically

mean systems that change are bad, and those that never change are good? Is change

always something to be avoided? If an information system remains stable and fails to

change with its environment, the system may cause a drag on the organization and hinder

organizational success (Truex, Baskerville and Klein, 1998). Therefore, it is important to

4 - 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

understand the nature of change and the associated change processes for information

systems.

Growth and change of information systems is accomplished through lifecycle

software maintenance. To understand the nature of information system change we must

understand the "dynamic behavior of programming systems as they are maintained and

enhanced over their life times", i.e. software evolution (Belady and Lehman, 1976).

Software change is a characteristic of the behavior of information systems as they evolve

throughout their productive lifecycles. Software volatility describes software changes

occurring as a result of lifecycle maintenance. By envisioning a longitudinal model of an

information system changing to keep pace with changes in its environment, we see a

system evolving along with its environment. Analysis of software volatility throughout a

system's lifecycle, and across different systems, can improve our understanding of

software change and system behavior. With this increased insight into software evolution

researchers and managers can enhance their understanding of software evolution and

improve management of lifecycle maintenance processes.

Some environments are more volatile than others. Some organizations change

more than others. Some tasks are more variable than others. These differences result in

differences in the volatility of information systems. At each level through this

progression, entities cope with changes in surrounding environments through the

dynamics of interfaces to each of those environments. The objective of this research is to

identify those dynamic environmental attributes that drive software volatility in

information systems. We start by examining factors in the competitive environment and

work progressively inward toward more localized factors at the task environment and

4 - 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

basic system levels, i.e. the system's inner environment All lifecycle maintenance

activities, including corrective and adaptive modifications, enhancements and new

program creations, serve as mechanism for software change (Pfleeger, 1998). Thus, we

recognize that these lifecycle maintenance activities are catalysts for software volatility.

Therefore, we build our conceptual model from two sets of prior research: research on

drivers of software volatility, and research on drivers of lifecycle maintenance and

software change.

In the remainder of this paper we build on this discussion by defining dependent

and explanatory variables to develop a conceptual model of the antecedents of software

volatility. After examining prior research and grounding theory for the influence of each

of these concepts, we establish operational variables for these concepts. Seven

hypotheses describe the relationship of each of these variables to our measure of software

volatility.

Empirical data obtained from the 20-year maintenance logs of a large company

are used to test the model through regression analysis. Regression estimates for the full

lifecycle maintenance records of 23 information systems are analyzed. Results indicate

that attributes of environmental interfaces at all levels drive software volatility.

By maintaining a system-level perspective we have built a predictive model for

software volatility. Using this model, researchers can broaden and deepen their

understanding of the transforming processes and dynamic behavior observed during

software evolution. Managers can improve their ability to anticipate change and design

adaptable systems while maintaining a lifecycle perspective for system support resource

4 - 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

requirements. We begin by reviewing the relevant literature on software change and

change processes in software evolution.

SOFTWARE EVOLUTION

Software change and change processes have been studied in a number of contexts.

One perspective for analyzing and understanding lifecycle software change is the study of

software evolution. By its very nature software evolution occurs incrementally over long

periods of time. Based in general systems theory, studies of software evolution

emphasize longitudinal descriptions of system characteristics and the change processes

affecting them. Using analytical methodologies a number of researchers apply a top-

down systems approach describing the processes that affect information systems and the

transformational forces that influence them (Lehman, 1977; Woodside, 1980; Lehman,

1980, 1981,1984, Yau, Nicholl, Tsai and Liu, 1988; Perry, 1994; Lehman, 1998).

Based on a series of empirical and analytical studies, Lehman et al. have

developed eight laws of software evolution for embedded systems (Lehman and Belady,

1985; Lehman, et al., 1997). Much of the research on software evolution has sought to

support these laws using relatively short data collection periods for operating systems

software. (Lehman and Belady, 1985; Lehman, et al., 1997). Four of the eight laws on

software evolution describe changes in system characteristics, while the other four deal

with the interfaces and exchange of information between organizations and their

embedded information systems (Lehman, et a l, 1997).

Current research on software evolution is headed in a number of different

directions. Software evolution is providing a theoretical foundation for analysis of

reverse engineering technologies and new perspectives on cost estimation tools. In

4 - 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

addition, further work is being done on the FEAST/2 (Feedback Evolution and Software

Technology) project, further investigating Lehman's eighth law, the Law of System

Feedback (Lehman, et al., 1997).

SOFTWARE VOLATILITY

Another research perspective has concentrated on change processes and the

definition and measurement of software volatility. Prior research on volatility relating to

information systems has described software volatility as change in software product, or as

change in software process. Practitioners routinely track software product change with

version numbers. Traditional system-level versioning fails to track the size or frequency

of software changes. Researchers often rely on token counts of modifications to measure

software product change (Butcher, 1997; Banker and Slaughter, 2000). Yau and

Collofello (1980; 1985) developed a measure of system instability by calculating logical

ripple effect based on counts of cyclomatic complexity in software modules.

Software process volatility is measured by counting changes in data models or

objects during software design and development (Marche, 1993; Li, et al., 2000). Heales

(2000) develops a software volatility index to measure effort spent on deep structural

changes during software change processes. However, all of these measures fail to answer

the question about how often information systems are changed.

Existing measures of token counts of modifications over time are usually

maintained at the program or module level. We define an aggregate measure of software

volatility at the system-wide level that can be calculated at different times throughout

productive system lifecycles. By recognizing the connection between an information

system and its environment, we build a model describing antecedents of software by

4 - 5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

examining dynamic factors in that environment. Our measure of software volatility is

used to empirically test this model.

Software volatility is a characteristic of the dynamic behavior observed in

software evolutionary processes. This dynamic behavior implies system change. Some

systems change frequently, and some seldom change. Each information system evolves

and changes at its own pace. We identify information system change as software

volatility so we can identify and analyze the differences in the timing of these changes.

To concentrate on the time dimension of this software volatility we measure the intervals

between software modifications. Increases in software volatility will manifest

themselves as changes that will occur at shorter, more frequent, intervals. Decreases in

software volatility will be seen as less frequent, longer, intervals between changes. This

could be measured as Mean Time Between Failures (MTBF) as has been done in some

software research studies (Lyu, 1996; Gaither, 1990). However, the measures used in

software reliability engineering are only modeled for corrective software modifications.

For studies of software evolution we need to consider all software modifications,

regardless of the motivation for change, e.g. corrective, adaptive, enhancement and new

program creation. To facilitate an analysis of changes in lifecycle system behavior, the

time dimension measure of software volatility needs to be calculable at specified time

periods throughout a system's productive life span. MTBF is generally calculated once,

or only a few times, during the useful life of an artifact (Gaither, 1990).

We use periodicity as a measure of the time dimension of software volatility to

describe mean time intervals between software modifications (Barry and Slaughter,

2000). Periodicity can be calculated as an aggregate measure at the system-wide level at

4 - 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

any time interval needed for our analysis. This provides a descriptive measure to identify

frequency of change. Periodicity will tell researchers and managers how often lifecycle

software maintenance activities occur in each productive system. As we analyze

software volatility we note that increased software modifications occur at more frequent

intervals with decreasing periodicity. Alternatively, increasing periodicity indicates

decreased levels of software volatility.

Software volatility can also be described by amplitude and deviation (Barry and

Slaughter, 2000). Amplitude is defined as the size of software change, and deviation

indicates the variation in behavior among systems. This research uses one dimension of

software volatility, periodicity, as our dependent variable for two reasons.

First, the body of literature providing a foundation to identify antecedents of

software volatility is most closely linked with token counts of modifications.

Modification counts are logically comparable to the reciprocal of periodicity (Barry and

Slaughter, 2000). Therefore, we can construct our model using hypotheses with rationale

from this body of research. Because our previous work demonstrated discriminant

validity among periodicity, amplitude and deviation, the dimensions of software volatility

(Barry and Slaughter, 2000). The independence of periodicity, amplitude and deviation

requires separate models for each of the dimensions of software volatility. To maintain a

strong focus for the current investigation we pursue a single line of investigation.

The objective of this research is to identify the factors that drive software

volatility as measured by periodicity, as in Figure 1. In the next section we review prior

work on drivers of software change to develop a conceptual model predicting software

volatility.

4 - 7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Software Volatility:
Periodicity

Basic System Characteristics

Competitive Environment Interface
Business Size

Task Environment Interface
Organizational Role
Maintenance Team Instability
Purchased Software Package
CASE tool use
Software Maintenance Profiles

Figure 1: Antecedents of Software Volatility

ANTECEDENTS OF SOFTWARE VOLATILITY

Each of the existing studies of software volatility uses a different definition and

measure of software volatility and, therefore, as a consequence, predictive models for

software volatility identify a wide variety o f explanatory factors. Models predicting

volatility of software products concentrate on those characteristics driving software

change (Butcher, 1997; Banker and Slaughter, 2000; Yau and Collofello, 1980,198S).

Those models predicting volatility of software process focus analysis on attributes of both

the software process and software product (Marche, 1993; Li, et al., 2000; Heales, 2000).

4 - 8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

We draw from two bodies of literature to develop our model. First, we recognize

that information systems are embedded in the overall general environment. As

environments change, these information systems must change and evolve to remain

productive. The mechanisms for this change is lifecycle software maintenance activities.

Hence, we also examine existing models identifying drivers of software maintenance or

software modifications. We start with the interface to the general competitive

environment and progress to the localized task environment interface with the

information system. We then examine the essential characteristics of information

systems to assess their influence on levels of lifecycle software volatility.

Competitive Environment interface

All organizations exchange resources with their environments. Organizations

viewed as open systems participate in this exchange on a great many levels. More closed

organizations may only exchange output with the outside world However, most

organizations operate as open systems and are viewed that way. As open systems,

organizations rely on surrounding environments for resources, including information

resources, needed to succeed (Scott, 1992). To maintain their productivity, organizations

must change to keep pace with the dynamic nature of their competitive environment

(Porter, 1980; Morgan, 1997; Highsmith, 2000). Organizations faced with dynamic

environments have an increased need for informational resources to meet competitive

challenges. These increased requirements can be met by increasing the internal resources

available. Resources required for survival are the most immediate and relevant focus for

organizations interfacing with their competitive environment (Dess and Beard, 1984).

4 - 9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

An organization's ability to compete in the business environment and obtain

needed resources can be crucial to organizational success. Size can be used as an

indicator of the demand for an organization's products and services. Size is a dimension

of organizational structure. Size indicates an organization's ability to compete against its

cohorts for outside resources. Size is a variable on the interface between an organization

and its environment. Size measures how much work an organization does (Scott, 1992).

Companies grow incrementally by building on their own success. Some large

changes in company size occur through merger and acquisition, or divestiture of smaller

companies or large company subdivisions. Any of these changes may affect information

requirements and necessitate information system modification. If a business is involved

in mergers and acquisitions, its information systems may need to be enhanced to provide

services for new functional areas and increased services for a larger and more diverse

constituency. These changes result in modification of information systems and increases

in software volatility. Thus, we state the following hypothesis:

HI: Increasing business sice will increase software volatility, i.e. decrease
periodicity.

Task Environment Interface

Each organization faces a number of varied tasks for its survival and success.

Task environments are created to denote the parts of the organization relevant to, or

potentially relevant to, accomplishment of these tasks (Thompson, 1967). Information

systems are the tools organizations use to solve problems and accomplish necessary

tasks. Thus, changes in the task environment directly affect software volatility. Primary

characteristics of any task environment define the task and identify its domain. They

include problem complexity and the number and variety of its constituency. These

4 - 1 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

characteristics are frequently reflected in the information systems created to support these

tasks, and in the processes used to develop and maintain those systems.

We capture differences in task domain by identifying the functional domain of

each information system. The relationship between an information system and its

organization is the primary task environment interface. This relationship is a system's

organizational role. This role can be described several ways. A system can be identified

by the functional business area it supports, e.g. human resources, operations, etc. The

timing and quantity of changes in different business areas will be reflected in the

volatility' of systems supporting those functions. There are a number of ways to describe

different functional roles performed by information systems. A system may serve a

technical core function or a boundary-spanning function (Thompson, 1967; Scott, 1992),

and there are different demands for the content and timeliness of information provided by

boundary-spanners and non-boundary-spanners (Aldrich and Herker, 1977). Boundary-

spanning information systems create and distribute information for users inside and

outside an organization. Boundary-spanning information systems need to respond more

often and more quickly to changes in an organization's external environment and produce

new and different types of information as it become available. These systems may create

annual financial reports for stockholders, monthly statements and special sales flyers for

customers and online Just-In-Time delivery and inventory information for suppliers.

Non-boundary-spanning information systems create information to be used within the

organization, e.g. an organization's payroll system.

Information systems can also be used to provide buffers between external

competitive forces and internal resources by influencing demand, leveling supply and

4 -11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

demand of resources and product, forecasting and adjusting activities, and aiding with the

organization's technical core (Scott, 1992).

Whether we examine the specific business area a system supports, the extent to

which a system serves in a boundary-spanning capacity, or the strategic goal it facilitates,

we are assessing the role the information system plays in its organization. Information

systems spanning the boundary between one group and another, either within an

organization or between an organization and the outside world, must be flexible and

changeable to accommodate all stakeholders. Thus, boundary-spanning functional roles

promote more volatility in the information systems supporting them. We formally state

the following hypothesis:

H2: Information systems with boundary-spanning roles will have higher
software volatility relative to those with non-boundary spanning
roles, i.e. decreased periodicity relative to those systems with non-
boundary-spanning roles.

A number of studies have analyzed task team and task processes as dimensions of

task environment volatility because they serve as dynamic elements of the task

environment interface (Dess and Beard, 1984). Both the maintenance team and the

processes used to develop and maintain information systems serve as mechanisms for

changing software.

Prior research on software maintenance and software evolution has shown that

team factors significantly influence software maintenance processes (Perry, 1994;

Slaughter, 1995; Dekleva, 1992; Kemerer, 1995). We theorize that team factors also

affect software volatility. No one is as knowledgeable about source code as is the source

code author (Sacks, 1994). When other programmers try to modify source code, they

often have difficulty because they are less familiar with code written by someone else.

4 - 1 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Thus, changes in programmer-program assignments can result in increased errors and

unnecessary modifications. Programmers unfamiliar with source code are likely to

change the code more often, change more code than necessary, and change more

programs than needed. If maintenance team members are uninformed of concurrent

maintenance activities, software modifications may need to be rewritten and re-tested,

forcing increases in software volatility. This maintenance team instability, i.e. changes in

assignments and membership of the maintenance team supporting a system, can increase

software volatility. The following hypothesis results:

H3: Increased maintenance team instability will increase software
volatility, i.e. decrease periodicity.

Task processes and procedures represent the standard operating procedures and

processes used by an organization to accomplish specific tasks. We concentrate on those

processes in the task environment relating to development and maintenance of

information systems.

Software development practices have been shown to affect the levels o f software

volatility and lifecycle software maintenance (Lientz and Swanson, 1980; Banker and

Slaughter, 2000; Heales, 2000). To begin examining differences in development

processes we ask who developed the system. Software is often purchased from

outsourcers because managers believe the organization lacks necessary in-house

resources to create a reliable and efficient system (Lacity and Hirschheim, 1993;

Kirkpatrick and van Scoy, 1993). Purchased packages are often assumed to require less

lifecycle maintenance and expected to have reduced levels of software volatility. Under

contractual agreement, the vendor often restricts maintenance of purchased software

packages. Source code may be available for modification only to vendor personnel. In

4 - 1 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

addition, many purchased information systems have lifecycle maintenance scheduled and

controlled by the vendors. Outsourcers control lifecycle maintenance activities for

purchased packages by scheduling modifications less frequently for large portions of the

system, and install new versions of many system programs at the same time resulting in

decreased software volatility, i.e. increased periodicity. This leads us to the following

hypothesis:

H4: Purchased packages have decreased software volatility, i.e. increased
periodicity.

Structured development practices encourage the design of structured systems.

Computer-Assisted System Engineering (CASE) tools reinforce the use of structured

system design and controlled development methodologies (Low and Leenanuraksa,

1999). CASE tool proponents emphasize the time and effort saved by software

developers and maintainers in dealing with source code (Martin, 1989). These tools

make it possible to reduce maintenance effort even while increasing the changes

occurring in the source code. CASE tools encourage re-engineering and replacing source

code rather than maintenance of existing code (Martin, 1989). CASE tools are used to

help implement a single design philosophy in an organization throughout its many

projects and information systems. CASE tools improve system documentation by

facilitating the creation and revision of complete current system documentation (Hoffer,

George and Valacich, 1996). Thus, CASE tools facilitate software maintenance

processes. Availability of CASE tools promotes change because the tools make it

relatively easy to change the software. This will tend to make software modifications

more frequent and decrease periodicity. Therefore, we assert that use of CASE tools will

4 - 1 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

increase software modifications and software volatility, as measured by decreased

periodicity.

H5: Increased use o f CASE tools increases software volatility, i.e.
decreases periodicity.

Lifecycle maintenance represents the largest force driving software modification.

As much as 80% of the effort spent on information systems is expended during post*

implementation lifecycle maintenance. The historical pattern of these incremental

software changes can be used to describe a software change process composed of a

variety of maintenance activities. Differences in patterns of these activities distinguish

lifecycle maintenance processes used from one system to another. We refer to these

historical patterns as lifecycle maintenance profiles. Prior research has shown that

lifecycle maintenance profiles may vary widely from one information system to another,

even among systems within the same organization. Research on software process

volatility has shown the significance of prior modification profiles (Heales, 2000). For

some systems empirical tests have demonstrated the significant contribution these

profiles make in predicting software processing errors (Barry, Kemerer and Slaughter,

1999). Software changes accomplished through addition, change or deletion of source

code will all result in some level of software faults (Malaiya and Denton, 1999). These

software faults will require correction, precipitating software modification and increasing

software volatility. Hence, we assert that lifecycle maintenance profiles are significant

drivers in a generalized predictive model of software volatility. Thus, we state the

following hypothesis:

H6: Increases in lifecycle maintenance profiles will increase software
volatility, i.e. decrease periodicity.

4 - 1 5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Basic System Characteristics

Basic system characteristics are those attributes used to describe the essence of an

information system. If we look at the interface of an information system and its

environment, we ultimately view the inner core, i.e. the inner environment, as the

substance and organization of the system itself (Simon, 1994).

Information systems are among the most complex and abstract of any artifacts

humans have created (Simon, 1994; Brooks, 1995). Basic system characteristics are

inextricably linked to the characteristics of the tasks they address. An information system

is an abstract construct of interlocking concepts representing data sets and relationships.

The inherent properties of information systems are often reduced to measures of their

complexity, size and age (Brooks, 1995).

Previous research on software volatility has identified some software

characteristics relating to the volatility of software products, including structure and

complexity (Banker and Slaughter, 2000). Software complexity is a basic software

product characteristic. Software complexity has been linked to software product

volatility (Yau and Collofello, 1980; Banker and Slaughter, 2000). Increases in software

complexity are also associated with increased levels of software maintenance (Banker, et

al., 1997). We recognize the complexity of an information system is a mixture of task

complexity and the complexity of its implemented solution. Total complexity is a basic

description of the system we analyze (Wood, 1986; Banker, Davis and Slaughter, 1998).

Thus, increases in software complexity will increase necessary software maintenance

and, in turn, increase software volatility, i.e. decrease periodicity. We formally state the

following hypothesis:

4 - 1 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

H7: Increased software complexity will increase software volatility, i.e.
decrease periodicity.

Software size is also significant in predicting occurrence of software faults and

software modifications (Kemerer, 1995; Banker, Datar, Kemerer, and Zweig, 1993).

Larger programs and systems contain larger numbers of faults and require more

modifications to correct those faults. System age is another basic system characteristic.

Lehman et al. (1997) state three laws of software evolution describing system changes

related to software aging.1 Work on software process volatility has also identified the

significance of software size and age (Heales, 2000). Analyses of software evolutionary

processes imply that software volatility increases with age. As information systems age

we expect an increasing divergence between them and their environments. Resolution of

these discrepancies requires software modification resulting in increased software

volatility. System size and system age are exogenous variables included as control

variables in our predictive models of software volatility.

Our seven hypotheses are summarized in Table 1. Directional relationships

specified in hypotheses HI through H7 are diagrammed in Figure 2.

1 These are the Law o f Continuous Change (the 1* law), the Law o f Increasing Entropy (the 2nd law), and
the Law o f Continuing Growth (the 6* law) (Belady and Lehman 1985).

4 - 1 7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The model for software volatility, V, we will be empirically testing is:

V =) + *

Where
fio = constant term
Pi Xi - coefficient and explanatory variable for business size (as in H I)
P2 X2 - coefficient and explanatory variable for role (as in H2)
P3 X3 = coefficient and explanatory variable for maintenance team

instability (as in H3)
p4 X4 = coefficient and explanatory variable for purchased packages (as in

H4)
PsXs= coefficient and explanatory variable for CASE tool use (as in H5)
Pi Xt, = coefficient and explanatory variable for maintenance profiles (as in

H6)
P? X t - coefficient and explanatory variable for complexity (as in H7)
e = error term.

4 - 1 8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

im M m im m te am k w tib M y (t-1) H3

♦

CASE to o l UM (t-1)

Wfacycto hmM m im ic* praflto (t-1)

syitam aga (t-1) *

sy stem stza (t-1)

* Syam age ia n cd to n n u lf a t periodicity

Figure 2: Predictive Model for Periodicity

METHODOLOGY

Research Site

The research site is a publicly owned mid-Western retailer with a portfolio of 23

information systems, including 3500+ software programs. This portfolio supports work

for human resources, fiscal, operations and merchandising business functions. The

company supports this large and varied software portfolio with its centralized

Information Systems (IS) department The IS department has separate development and

maintenance units.

4 - 1 9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Data

During the software portfolio’s 20-year history, the IS department maintained a

detailed log of every modification made to each program, providing researchers with

detailed information about 25000+ individual change events, i.e. any software

modification for correction, adaptation, enhancement or creation of new programs

(Kemerer and Slaughter, 1999).

Other available system characteristics include counts of programs, paragraphs,

lines of code and each of Halstead’s primitive measures (Conte, Dunsmore and Shen,

1986). Each program is flagged to indicate that CASE tools were used during its

development or maintenance support. A binary variable indicates systems purchased as

software packages. The indicator was set by detecting a vendor's name as the source

code author.

Measures

Operational definitions for the model's dependent and explanatory variables are

listed in Table 2. Each variable is measured for each month of the productive life span of

each information system.

The dependent variable periodicity is measured as the system-wide average time

interval between software modifications, relative to system age. Periodicity is calculated

monthly to allow analysis of variation in software volatility throughout the productive

lifecycle of an information system. We measure periodicity relative to system age to

allow analysis across systems and throughout a system's lifecycle.

4 - 2 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Explanatory variables in our predictive model of software volatility are grouped

in three categories: (1) attributes of the competitive environment interface, (2) attributes

of the task environment interface, and (3) basic system characteristics.

(1) Attributes of the Competitive Environment Interface: A company can adjust to

changes in the competitive environment through growth, mergers and acquisitions, and

divestiture of subdivisions. Changes in Business Size can be used to indicate these

changes. We use annual revenue as a measure of business size2. Annual revenue is

adjusted by the consumer price index (CPI) to correct for general economic conditions

over the span of this longitudinal study.3

(2) Attributes of the Task Environment Interface: A number of attributes can be

used to describe the task environment interface. The role an information system plays in

an organization can be associated with the functional domain of the information system.

Aldrich and Herker (1977) discuss the tension when acting as liason between groups

from inside and outside an organization. They show that people and systems functioning

in boundary-spanning roles face increased volatility in information requirements. This

led us to hypothesize that information systems fulfilling boundary-spanning roles will

have increased levels of software volatility. We operationalize these roles with dummy

variables to indicate information system ownership by different functional areas of the

company: human resources, operations, merchandising and fiscal. These functions each

respond to the information needs of a different constituency. The human resources

function serves internal stakeholders and would need information processing for such

2 Annual revenue was obtained from each year o f this publicly-owned company’s annual report to
stockholders.

4 - 2 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

things as payroll and benefits. We would expect information systems supporting the

human resources function to facilitate internal information requirements and be a non-

boundary-spanning function. In contrast, information requirements for the fiscal area

would be set by a large and widely diverse group of stakeholders. Fiscal systems are

required to produce specialized accounts payable systems and reports for the annual

report o f stockholders. We expect these information systems to support a boundary-

spanning function. We use a fixed-effects model in our parameter estimates to

distinguish the functional domain for information systems in the portfolio.

The composition of an organization's software maintenance team can be used to

describe maintenance team instability. The detailed information in the maintenance logs

for the organization's portfolio allows us to count the number of times lifecycle

maintenance activities are completed by a programmer different from the programmer

previously assigned to support that program. A count of these programmer swaps is

used as the operational variable to describing maintenance team instability. This variable

is aggregated at the system level by summation of the programmer swaps for each

program in the system, for each month in the system life span.

A simple binary variable is used to identify which systems were purchased

software packages. This will indicate those information systems where the development

process was outsourced.

Development and maintenance processes are also described by the use o f CASE

tools in an information system. Each program in our portfolio was marked as using, or

3 All financial data adjusted by CPI reported by U.S. government and reponed in the 1999 World Almanac
and Book o f Facts, p. H I.

4 - 2 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

not using, a commercial CASE tool during development and maintenance. System

CASE-tool-use is aggregated as the monthly count of programs in a system developed or

maintained by CASE tools divided by the number of programs in the system, i.e. the

portion of each system's programs using CASE tools. This calculation allows CASE-

tool-use to vary from system to system and throughout the productive life span of

individual systems.

Maintenance processes are described by software maintenance profiles.

Historical patterns of lifecycle software maintenance activities are classified by

motivation for the modifications: corrective, adaptive, enhancement and new program

creation. These variables were operationalized for our empirical tests by calculating the

proportionate mix of corrective, adaptive, enhancement and new program creations for

each month in each system's life span.

(3) Basic System Characteristics: Three essential characteristics of information

systems are complexity, size and age. Software complexity can be broken down as

component, coordinative and dynamic complexity (Wood, 1986; Banker, Davis and

Slaughter, 1998). We use the following software product metrics for these complexities

and normalize them by system size, i.e. total lines of code (LOC). Component

complexity is operationalized as normalized system total unique operands, i.e. Halstead's

n2/(LOC). Coordinative complexity is operationalized using normalized system total

McCabe's cyclomatics, i.e. total cyclomatics/(LOC). Dynamic complexity is

operationalized as normalized program calls, i.e. total calls/(LOC).

The operational measure of periodicity is normalized relative to system age.

Therefore, we do not include system age as a separate explanatory variable in our

4 - 2 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

predictive model. The control variable for system size is operationalized as current total

LOC.

Construct Operational
Variable

Description Unit Of Analysis
Varies...

HI

H2

H3

H4

H5

H6

Business size Annual revenue

Organizational
role

Maintenance
team
instability

Purchased
software
package
CASE tool
development
Maintenance
profiles

H7 complexity

System size

4-way fixed effects
for business area
supported
Programmer swap
count

Package

CASE tool use

Corrective mix

Adaptive mix

Enhancement mix

New program mix

Normalized
Component
complexity
Normalized
coordinative
complexity
Normalized
dynamic
complexity
Total LOC

By year

By system

By system by month

By system

By system by month

By system by month

Company's total annual revenue
adjusted by CPI
dummy variables to indicate one of
4 business areas: human resources,
fiscal, operations, merchandising
Count of each program modification
completed by someone other than
the previous programmer to
maintain that program
Binary variable
1 = purchased package
0 = not purchased
System-wide average o f CASE-
tool-use indicators
poition of maintenance activities
classified as corrective
portion o f maintenance activities
classified as adaptive
portion of maintenance activities
classified as enhancement
Portion o f activities classified as
new program creation
System-wide count o f Halstead's n2
(unique operands) normalized by
system size
System-wide count o f McCabe's
cyclomatics normalized by system
size
System-wide count o f program calls
normalized by system size

Control variable - current total lines By system by month
of code in system

By system by month

Table 1: Antecedents of Software Volatility

Our data set was built using the variables in Table 1 for the full productive

lifecycle of the 23 information systems in the company's portfolio. Data collection

started for each information system on the date of its initial implementation, and

continued until the end of the data collection period or until the system was no longer in

use, whichever came first The result is an unbalanced panel data set containing 3201

4 - 2 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

observations. We include lagged explanatory variables, i.e. for time period t-1, to

accommodate our model predicting software volatility, i.e. periodicity, in time period t.

This slightly reduces our panel to 3178 observations.

RESULTS

Descriptive Statistics

Table 2 reports descriptive statistics for each of the operational variables used in

our predictive model. Table 3 reports the inter-correlations. In the software portfolio

there are four information systems for the human resources area, seven for operations,

two for merchandising and ten for the fiscal area. Four of the 23 systems in the software

portfolio are purchased packages.

Variable -all systems
3178 observations in 23 systems

Mean Std. Dev. Min. Max.

Software volatility - periodicity 0.4826652 0.459903 0 1
Annual revenue 9487.367 3232.399 3443.309 14715.38
Programmer swap count 3.323474 6.278237 0 68
CASE-tool-use 0.1633094 0.2640052 0 1
Corrective mix 0.0674294 0.1577636 0 1
Adaptive mix 0.0407775 0.226535 0 1
Enhancement mix 0.3510842 0.392479 0 1
New program creation mix 0.1073055 0.258088 0 1
Component complexity: n2 / lines o f code 2188174 0608182 1191962 3940193
Coordinative complexity: McCabe's cyclomadcs
/ lines of code

58445 25487 337224 1938202

Dynamic complexity: Calls / lines o f code 0079633 0054584 0 0304348
Total LOC 188705.2 262514.7 187 1279163
System age (in months) 84.06671 59.31983 2 246

Table 2: Descriptive Statistics of Operational Variables

By definition and the construction of operational variables, there are upper and

lower bounds on each of the relative measures, i.e. periodicity and each of the mix

proportions. We note a relatively high correlation between CASE tool use and both

coordinative and component complexity, and among the three measures of compkexity.

We will expand our analysis of this after reviewing parameter estimate from regression

4 - 2 5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

results. We will clarify this further and eplain the implications later in the discussion

section.

annual revanue pi
programmer swap
count p3
CASE-tool-use 35
corrective mix p6(1)
adaptive mix p6(2)
enhancement mot
P6(3)
new program creation
mix P6(4)
component complexit
37(1)
coordinative compiexi
37(2)
dynamic complexity
37(3)
Total LOC

31
1

0.2444

33 P5 p6(1) 36(2) 36(3) 36(4) 37(1) 37(2) 37(3)

1

0.3387
0.2184
0.1419
0.4719

0.3286
0.1017
0.3384
0.3707

1
02754
02584
0.4039

1
0.0431
0.1079

1
0.1221 1

-0.0444 0.1033 0.0183 -0.0796 -0.0525 -0.1447 1

-0.3209 -02390 -0.6943 -02363 -0.1474 -0.3342 -0.0521 1

•0.3272 -02354 -0.4401 -0.1815 -0.1434 -0.3316 -0.0390 0.5380 1

0.1405 0.1865 0.5752 0.1573 0.1078 02193 0.0128 -02752 -0.1867 1

0.4647 0.3738 0.7817 02698 02553 0.3816 0.0043 -0.5927 -0.3643 0.4190

Table 3: Correlations of Operational Variables

Parameter Estimates

A predictive model for periodicity was estimated using Generalized Least Squares

methods. As is often the case with panel data, i.e. pooled time series data, we found

evidence of serial correlation. A panel-specific correction for AR1 level serial

correlation was employed after the Breusch-Godfrey test confirmed autocorrelation

(Johnston, 1984). Separate regressions were run for each system's time series data.

These regressions reported a wide variation in Durbin-Watson statistics, indicating some

systems had strong serial correlation, and some were hardly affected. This indicated that

a panel specific correction would be more appropriate than using the same AR1

correction for the entire panel. This was confirmed by comparison of Wald statistics

from estimates using AR1 corrections against the Wald statistics from estimates using

panel specific AR1 corrections.

4 - 2 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Estimated parameters for our predictive model of periodicity are reported in Table

4 and results of hypothesis tests are reported in Table 5. Empirical tests support all but

one of our hypotheses. Residuals were examined for outliers by identifying observations

resulting in residuals more than three standard deviations from the mean residual (Neter,

Wassennan and Kutner, 1990; Beisley, Kuh and Welsch, 1980; Baroudi and Orlikowski,

1987). After removing 16 outliers, parameter estimates remained consistent with our

original results.

As hypothesized, we find that increases in business size, team instability and

lifecycle maintenance are associated with increased software volatility, i.e. decreased

periodicity.

The estimated coefficient for component complexity, i.e. [N2/system-total LOC]

has a sign opposite from that hypothesized (H7). We elaborate on this unexpected result

and provide a possible explanation in our discussion section.

Log likelihood = -667.5318 Wald = • • • * p s o . . o o i
N = 3178 4866.67 ** *P £0.05
Operational variable Estimated 0 p-value
Constant 0.9524293 0.000 Ml

Annual revenue (t-1) 0.0000229 0.000 ***
Business area ~ human resources -0.04S6381 0.137
Business area - fiscal -0.0771880 0.006 **•
Business area ~ operations -0.0523706 0.031 *•
Programmer swap count (t-1) -0.0070583 0.000 *•*
Purchased package 0.1764679 0.000
CASE-use (t-1) -0.0954437 0.094
Corrective mix (t-1) -0.4380241 0.000 • • •
Adaptive mix (t-1) -0.4148038 0.000 ***
Enhancement mix (t-1) -0.4895813 0.000 •*«
New program creation mix (t-1) -0.4275023 0.000
Component complexity: n2 / lines o f code (t-1) 0.4609087 0.001 *•*
Coordinative complexity: McCabe's cyclomatics / lines o f code (t-1) 0.1815908 0.638
Dynamic complexity: Calls / lines o f code (t-I) -1.5444250 0.305
Total LOC (t) •0.0000001 0.002 • ••

Table 4: Regression Estimate for Drivers of Periodicity

4 - 2 7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Supported9 Predicted Hypotheses concerning Competitive Environment Interface.
•** « p<0..001 sign
•* * p £ 0.05

HI Yes - Increasing business size will increase software volatility.
H2 Yes ** Information systems with boundary-spanning roles have

increased volatility, i.e. decreased periodicity, relative to those
with non-boundary-spanning roles.

H3 Yes *•» - Increased maintenance team instability will increase software
volatility.

H4 Yes + Purchased packages have decreased software volatility.
H5 • Increased use o f CASE tools increases lifecycle software

volatility.
H6 Yes • Increases in software maintenance profiles will decrease

periodicity.
H7 No - Increased software complexity will decrease periodicity

Table 5: Hypotheses test results

DISCUSSION

We built our conceptual models for drivers of software volatility based upon the

literature in software evolution and lifecycle software maintenance. We used a measure

of periodicity of lifecycle software maintenance activities as a measure of software

volatility. By emphasizing the close connection between information systems and their

environments, we built a predictive model for the antecedents of software volatility, i.e.

periodicity. Focusing on environmental influences, these antecedents are identified from

the dynamic attributes of interfaces between information systems and the competitive and

task environments. We also included attributes of the basic information system to

represent the core inner environment of all systems. Parameter estimates for our

predictive model of periodicity lend strong support to this approach. In the following

paragraphs we discuss the results for characteristics of each environmental level.

4 - 2 8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Competitive Environment Interface

Business size operationalized as annual revenue is negatively related to

periodicity of software volatility. Thus, growing businesses will face increased software

volatility and more frequent software modifications to their information systems

portfolio. This provides support for hypothesis 1. While perhaps intuitive, this result (1)

alerts managers to build this effect into their cost planning, and (2) allows us to interpret

the other effects in the model with greater confidence.

Task Environment Interface

We hypothesized that the organizational role influences the volatility of an

information system supporting that role (H2). The predictive model demonstrates the

significance of organizational role, i.e. functional domain, supported by each information

system. Information requirements for each information system vary according to the

tasks assigned. As a result, we expected information systems supporting boundary-

spanning activities to have higher levels of software volatility as compared to those

supporting non-boundary-spanning activities. Boundary-spanning activities share

information between organizations.

The organizational role of the information system is a significant driver in our

empirical model as indicated by the significance of the group of fixed-effects variables

designating business area (F - 24.398, p-value = 0.00) (Greene, 1997). The functional

domains supported by information systems in four business areas have distinctly different

levels of software volatility (F = 21.49173, p-value 0.00) (Greene, 1997). Using the

merchandising group as a reference group, we observe that the fiscal systems have the

4 - 2 9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

lowest periodicity and are, thus, the most volatile. This is as we expected for boundary*

spanning systems like the information systems supporting the fiscal domain.

As hypothesized, increases in maintenance team instability will increase software

volatility and decrease the time intervals between software modifications, i.e. decrease

periodicity (H3). Managers should be mindful of the effect of changing the programmer-

program assignments for lifecycle maintenance. Increased swapping of programmer

assignments will cause more software modifications than if the program's sequential

modifications are handled by the same programmer. The implicit knowledge

programmers collect as they familiarize themselves with a program and modify it is not

likely to be easily or completely transferred. If the program is assigned to a different

programmer each time modifications are required, each person must build their

knowledge of the program for each change. Unnecessary modifications may result as

newly assigned programmers familiarize themselves with the source code.

As expected, purchased software packages are modified less frequently and have

lower periodicity, than information systems developed in-house (H4). Even though these

results seem counter-intuitive, they are consistent with results in Banker and Slaughter

(2000), showing that the use of CASE tools promotes increased levels of software

volatility (H5). Dekleva (1992) describes use of CASE tools as one way to judge the

amount of structure in system design, associating strong structuring techniques with use

of CASE tools. Banker & Slaughter (2000) show that more highly structured systems

have higher levels of volatility, i.e. more modifications. The results we obtain

demonstrate a negative relationship between CASE tools and periodicity, our parameter

estimate, though marginally significant, indicates that CASE tool use results in more

4 - 3 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

frequent system modification, providing further support for the Banker and Slaughter

result. Thus, CASE tools increase software volatility. This seems counter-intuitive until

we remember that CASE tools were never designed to stabilize software, only to make it

easier and less time-consuming to change.

Increases in lifecycle maintenance profiles increase software volatility, i.e.

decrease periodicity (H6). We operationalized historical patterns of lifecycle maintenance

profiles with four variables representing the proportion of lifecycle maintenance activities

devoted to each motivating maintenance category: corrective, adaptive, enhancement and

new program creation, respectively. Their combined values indicate the presence, or

absence, of lifecycle maintenance activity in time t-1. We used historical patterns of

lifecycle maintenance activities, i.e. software maintenance profiles, for time t-1 to predict

software volatility. Our results indicate that lifecycle maintenance activity in time period

t-1 will increase software volatility during time period t.

Basic System Characteristics

Prior research shows that increased software complexity will increase software

maintenance effort (Banker, Datar, Kemerer and Zweig, 1997). We hypothesized that

increased complexity will increase software changes, thus increasing software volatility

and decreasing periodicity (H7). Software complexity was operationalized three ways; as

component complexity, as coordinative complexity, and as dynamic complexity. This

reflects the types of cognitive complexity programmers face in creating task solutions

with their source code. Our parameter estimates yield a positive coefficient for

component complexity and insignificant coefficients for coordinative and dynamic

complexities.

4 - 3 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Component complexity is measured as Halstead's n2 normalized by system total

LOC. Because Halstead's n2 counts unique data elements, high levels of component

complexity indicate information systems with relatively high levels of data-intensity.

There is research to indicate data intensive systems are more stable than those based on

process-driven models (Martin, 1989; Hoffer, George and Valacich, 1996). Our model

estimates for component complexity appear to support those findings.

Coordinative complexity and dynamic complexity measure the complexity of

decision branching in each program, and the call structure between programs within the

system, respectively. To make the inherent complexity of any task easier to deal with,

problem solvers often reduce complexity by breaking the task into smaller chunks

(Simon, 1994). By encouraging the creation of smaller, reusable programs, CASE tools

promote this same approach in re-engineering and maintaining software (Martin, 1989;

Low and Leenanuraksa, 1999). This change in design will also affect measures of

component and dynamic complexity.

CASE tools generate source code by using heuristics designed to create systems

with a large number of short reusable programs. These programs are accessed by

program calls. Thus, systems relying on CASE tools for source code generation will

have higher levels of dynamic complexity. CASE tools are used to generate programs

with simpler logic flow. These programs will have reduced coordinative complexity.

Once again, we note the relatively high correlation between the use of CASE tools and

measures of system complexity (con(CASE-tool-use, component complexity) = -0.6943;

corr(CASE-tool-use, coordinative complexity) = -0.4401; corr(CASE-tool-use, dynamic

complexity) = 0.S7S2). Pair-wise correlations also indicate that systems with more

4 - 3 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

programs generated by CASE tools are larger and have, on average, larger programs

(corr(CASE-tool-use, system size) = 0.7786; corr(CASE-tooI-use, average program size)

= 0.8394; corr(CASE-tool-use, programs in system) = 0.4115). These correlations lead

us to conclude that, in general, CASE tools generate systems with more programs of

smaller size. These programs have lower values of component and coordinative

complexity. They have higher complexity, i.e. they have increased levels of program

calls per LOC. By encouraging reuse of code, CASE tools generate programs to perform

generalized functions and use program calls to access those programs from other

programs in the system.

To check for the effects of multicollinearity among the measures of complexity

and CASE-tool-use, we re-estimated the model by omitting each of the four variables

individually. The results were consistent with those we obtained with the full model in

Table 4.

CONCLUDING REMARKS

This research contributes to the breadth and depth of our understanding of the

antecedents of software volatility. Our analysis indicates that dynamic attributes of the

environmental interfaces can be used to predict periodicity in software volatility. We

view an information system's environment as organized in successive layers, i.e. the

competitive environment, the task environment and the inner environment of the system

itself. We find that dynamic attributes describing an information system's interfaces to

each of these environments are significant drivers of software volatility.

Increasing business size can increase volatility by shortening the interval between

software modifications, i.e. decreasing periodicity. Increases in business size can

4- 3 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

indicate the acquisition or creation of new business units. These additions will have new

or changed information requirements. In addition, constituencies for existing systems

may increase. The need to satisfy information requirements for additional users will

result in an increased need for software modifications and increases in software volatility.

When organizations are viewed as open systems, the boundaries between them

become difficult to identify. Depending on organizational structure, there are boundaries

within organizations, between sections, departments and divisions. Information is often

shared between subdivisions or departments, or between a company and its strategic

partners. In the aftermath of mergers and acquisitions, information systems that had

previously been viewed as non-boundary spanning may become boundary- spanning.

Recognition of the tie between software volatility and the functional domain it supports

can include the need for flexibility in supporting boundary-spanning activities at any

level of an organizational hierarchy. Use of fixed-effects variables for business area

classifications capture a number of differences in the volatility in task environments and

their association with information system behavior. A more detailed classification of the

task performed and its associated functional domain would provide researchers with a

greater understanding of this source of volatility.

Purchased software will be modified less frequently, i.e. software packages have

increasing periodicity. The decision to buy a software package is often based on an

expectation of improved software quality and less need for software maintenance. Our

findings appear to confirm this. Many software vendors control lifecycle maintenance by

grouping modifications and releasing sets of changes, or new system versions at one

4 -3 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

time. This would result in lengthened intervals between modifications and increased

periodicity.

We speculate that CASE tool use may be interfering with the effect complexity

has on software volatility. The objective of CASE tools is to reduce the effort needed for

software development and modification. However, CASE tools generate larger systems

with more short programs. The individual programs are less complex, but have increase

levels of dynamic complexity, i.e. more program calls per LOC. CASE tools also

encourage re-engineering and regeneration of source code. Because CASE tools allow

code generation with relatively little programmer effort. Thus, CASE tools break the

connection between size and complexity of software and effort required to create and to

maintain that software. For the same reason, we believe the same interference is

affecting the results we obtain in examining the relationships between sofware volatility

and CASE tools.

We can use historical patterns of software maintenance activities, i.e. software

maintenance profiles, to predict software volatility. Our results indicate that lifecycle

maintenance activity in the previous time period will increase subsequent levels of

software volatility.

Increased component complexity, indicating data-intensive systems, will decrease

software volatility and increase periodicity. Systems with relatively high numbers of data

elements are likely to be relatively stable.

Implications fo r Future Research

This research expands our understanding of software evolutionary changes by

searching for drivers of software volatility, i.e. software change. By relating the time

4 - 3 5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

dimension of software volatility to the dynamic attributes of environments surrounding

an information system we have identified significant factors affecting software volatility,

i.e. periodicity. We learned that factors from each level of the general environment

contribute to software lifecycle changes.

In our discussions about software volatility we find it very easy to make implicit

assumptions about software volatility. Software volatility is often viewed as bad, or

something to be avoided. We don't really know this to be true. Future work should

examine the effect of software volatility on software maintenance outcomes. Researchers

should also examine the moderating effect of software volatility on the influence of other

factors in predicting lifecycle maintenance costs or processing errors.

Implications for Practice

We return to our original questions: "Why do we have to keep fixing this

software? Why can't you write a good system, so we don't need these constant changes?"

We often assume software volatility, i.e. software change, is bad, and should be avoided.

By recognizing the connection between information systems and their surrounding

environments, we see that change is often unavoidable. With the continued presence of

long-lived systems we understand that unchanging information systems can have

negative consequences. Consequently, practitioners should view software evolution and

software volatility as inevitable. Our identification of the drivers of software volatility

can help software managers by focusing attention on those drivers within a manager's

control while anticipating resources needed for software lifecycle maintenance task.

This work has demonstrated the effects that managerial decisions concerning

software sourcing, CASE tool use and staffing assignments can have on software

4 - 3 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

volatility and system behavior. It is too easy to make the assumptions that all software

volatility is bad and immediately leads to increased maintenance costs. These valid

questions are beyond the scope of this work. However, the ability to anticipate levels of

software volatility will help managers become more proactive in dealing with lifecycle

software maintenance.

By measuring software volatility and identifying the factors driving volatility,

researchers and practitioners can all improve their understanding of the transformations

occurring during software evolution. Knowing which factors influence software

volatility, researchers and managers can focus on controllable factors to improve

management of software evolutionary processes.

REFERENCES
Aldrich, H. and D. Herker, "Boundary Spanning Roles and Organizational Structure",

Academy of Management Review. Vol. 3,1977.

Banker, R.D., S.M. Datar, C.F. Kemerer, and D. Zweig, November 1993, "Software
Complexity and Maintenance Costs", Communications of the ACM. Vol. 36, No.
1,November, 1993, pp. 81-93.

Banker, R., G.B. Davis, and S.A. Slaughter, "Software Development Practices, Software
Complexity, and Software Maintenance Performance: A Field Study",
Management Science. Vol. 44, No. 4, Apr. 1998.

Banker, R.D., and S. A. Slaughter, "The Moderating Effects of Structure on Volatility an
Complexity in Software Enhancement", Information Systems Research. Vol. 11,
No. 3, Sept 2000, pp. 219-240.

Baroudi, J.J., and W.J. Orlikowski," The Problem of Statistical Power in MIS Research",
MIS Quarterly. March, 1989, pp.87-105.

Barry, Evelyn J., Kemerer, Chris F., and Slaughter, Sandra A., "An Empirical Analysis of
Software Evolution Profiles and Outcomes", Proceedings of the International
Conference on Information Systems. Charlotte, NC, December 1999.

Barry, Evelyn J„ and Slaughter, Sandra A., "Measuring Software Volatility: A Multi-
Dimensional Approach" (extended abstract), Proceedings of the International
Conference on Information Systems. Brisbane, Australia, December 2000.

Belady, LA. and M.M. Lehman, "A Model of Large Program Development", IBM
Systems Journal Vol. 3,1976, pp. 225-252.

4 - 3 7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Belsley, D.A., E. Kuh, and R.E. Welsch, Regression Diagnostics: Identifying Influential
Data and Sources of CoHiearitv. John Wiley and Sons, New York, 1980.

Brooks. F.J.. The Mythical Man-Month. Addison-Wesley Publishing Co. 1995.
Butcher, G., 1997, Addressing Software Volatility in the System Life Cvcle. Ph.D.

Dissertation, Colorado Technical University, UM1#9815557.

Conte, S., H. Dunsmore, V. Shen, Software Engineering Metrics and Models.
Benjamin/Cummings, Menlo Park, CA, 1986.

Dekelva, S.M., "The Influence of the Information Systems Development Approach on
Maintenance", MIS Quarterly. 1992, pp. 355-372.

Davis, G.B., M.H. Olson, Management Information Systems: Conceptual Foundations
Structure, and Development. 2nd Edition. McGraw-Hill Book Company. 1985.

Dess, G.G. and D.W. Beard, "Dimensions of Organizational Environments",
Administrative Science Quarterly. Vol. 29, 1984, pp. 52-73.

Gaither, N., Production And Operations Management: A Problem-Solving and Decision-
Making Approach. 4th Edition. The Drvden Press. 1990.

Greene, William H., Econometric Analysis. Third Edition. Prentice Hall, Upper Saddle
River, NJ, 1997.

Heales, J., "Factors Affecting Information Systems Volatility", Proceedings o f the
International Conference on Information Systems 2000. Brisbane, Australia,
2000,.

Highsmith, J.A., HI, Adaptive Software Development: A Collaborative Approach to
Managing Complex Systems. Dorset House Publishing, NY, 2000.

Hoffer, J.A., J.F. George, and J.S.Valacich, Modem Systems Analysis and Design. The
Benjamin/Cummings Publishing Company, Inc., Reading, MA, 1996.

Johnston, J., Econometric Methods. Third Edition. McGraw-Hill, Inc., New York, 1984.

Kalakota, R., and A.B. Whinston, Electronic Commerce: A Manager's Guide. Addison-
Wesley, Reading, MA, 1996.

Kemerer, C.F., "Software complexity and software maintenance: A survey of empirical
research", Annals of Software Engineering. Vol. 1, Sept. 1995, pp. 1-22..

Kemerer, Chris F. and Slaughter, Sandra A., 1999, "An Empirical Approach to Studying
Software Evolution", IFEF. Transactions on Software Engineering. Vol. 25, No. 4,
1999, pp. 493-509.

Kirkpatrick, R.J., and R. Van Scoy, "Potential Risks to Software Development Projects
from the Use of COTS Components", Proceedings of 5th Annual Software
Technology Conference. Salt Lake City, Utah, 1993.

Lacity, M.C. And R. Hirschheim, Information Systems Outsourcing: Myths. Metaphors
and Realities. John Wiley and Sons, New York, 1993.

4 - 3 8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Lehman, M.M., "Human Thought and Action as an Ingredient of System Behavior",
Encyclopedia of Ignorance. R. Duncan and M. W. Smith (Eds), Pergamon Press,
Oxford, 1977.

Lehman, M.M., "Programs, Life Cycles and Laws of Software Evolution", Proceeding of
IEEE Special Issue on Software Engineering. Vol. 68, No. 7,1980, pp.l 160-1176.

Lehman, M.M., "Programming Productivity - A Lifecycle Concept", Proceeding
CompCon '81 .1981, pp. 232-241.

Lehman, M.M., "Program Evolution", Information Processing and Management Vol. 20,
1984, pp. 19-36.

Lehman, M.M., "Software's Future: Managing Evolution", IEEE Software. 1998, pp. 40-
44.

Lehman, M.M., and L.A. Belady, Program Evolution: Processes of Software Change.
Academic Press, London, 1985.

Lehman, M.M., J.F. Ramil, P.D. Wemick, D.E. Perry, and W.M. Turski, "Metrics and
Laws of Software Evolution - The Nineties View", Metrics *97. the Fourth
International Software Metrics Symposium. Albequerque, NM, 1997.

Li, W., L. Etzkom, D. Davis, and J. Talburt, "An Empirical Study of Object-Oriented
System Evolution", Information and Software Technology. Vol. 42, No. 6,2000,
pp. 373-381.

Lientz, B.P., and E.B. Swanson, Software Maintenance Management. Addison-Wesley,
Reading, MA, 1980.

Low, G., and V. Leenanuraksa, "Software Quality and CASE Tools", Proceedings of
Software Technology and Engineering Practice. STEP *99, Pittsburgh, PA, 1999,
pp. 142-150.

Lyu, M.R., Handbook of Software Reliability Engineering. IEEE Computer Society
Press, Los Alamitos, CA, 1996.

Malaiya, Y.K., and J. Denton, "Requirements Volatility and Defect Density",
Proceedings 10th International Symposium on Software Reliability Engineering.
1999, pp. 285-94.

Marche, S., "Measuring the Stability of Data Models", European Journal of Information
Systems. Vol. 2, No. 1,1993.

Martin, J., Information Engineering: Book I Introduction. Prentice Hall, Englewood
Cliffs, NJ, 1989.

Morgan, G., Images of Organization. Sage Publications, Thousand Oaks, CA, 1997.
Neter, J., W. Wasserman, and M.H. Kutner, Applied Liner Statistical Models Regression.

Analysis of Variance, and Experimental Design. 3rd Edition, Richard D. Irwin,
Inc., Burr Ridge, IL, 1990.

Peny, D.E., "Dimensions of Software Evolution", IEEE Conference on Software
Maintenance. IEEE, 1994.

4 - 3 9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Pfleeger, S., "The Nature of System Change", IEEE Software. Vol 15, No. 3,1998, pp.
87-90.

Porter, M.E., Competitive Strategy: Techniques for Analyzing Industries and
Competitors. The Free Press, New York, 1980.

Sacks, M., On the Job Learning in the Software Industry: Corporate Culture and the
Acquisition of Knowledge. Quorum Books, Westport, CT, 1994.

Scott, R.W., Organizations: Rational. Natural, and Open Systems 3rd Edition, Prentice
Hall, Englewood Cliffs, NJ, 1992.

Simon, H.A., The Sciences of the Artificial. The MTT Press, Cambridge, MA, 1994.

Slaughter. S.A... Software Development Practices and Software Maintenance
Performance: A Field Study. Ph.D. Dissertation, University of Minnesota, 1995.

Thompson, J.D., Organizations in Action. New York, McGraw Hill Book Co., 1967.

Truex, D.P., R. Baskerville, and H. Klein, "Growing Systems in Emergent
Organizations", Communications of the ACM. Vol. 42, No. 8,1998, pp. 117-123.

Wood, R.E., "Task Complexity: Definition of a Construct", Organizational Behavior and
Human Decision Processes. Vol. 37, 1986, pp. 60-82.

Woodside, C.M., "A Mathematical Model For the Evolution of Software", Journal of
Systems and Software. Vol. 1, No. 4,1980.

World Almanac and Book of Facts 1999. World Almanac Books, 1999, Mohawk, NJ,
1 1 1 .

Yau, S.S., and J. Collofello, "Some Stability Measures for Software Maintenance", IEEE
Transactions on Software Engineering. Vol. 6, No 11,1980, pp. 545+.

Yau, S. S., and J. Collofello, "Design Stability Measures for Software Maintenance",
IEEE Transactions on Software Engineering. Vol.l 1, No. 9,1985, pp. 849-856.

Yau, S.S., R.A. Nicholl, J.J. Tsai, and S.S. Liu, "An Integrated Life-Cycle Model for
Software Maintenance", IEEE Transactions on Software Engineering. Vol. 14, No.
8,1988, pp. 1128-1144.

4 - 4 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 5:

RESEARCH QUESTION 3 -

CHARACTERISTICS OF SOFTWARE EVOLUTION AND LIFECYCLE
MAINTENANCE OUTCOMES

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

INTRODUCTION
Information systems (IS) managers universally cope with the task of lifecycle software

maintenance. Despite the importance of software maintenance, IS managers deal with

management of software maintenance in a predominantly reactive, rather than proactive, manner.

This is partially due to the difficulty in forecasting lifecycle maintenance outcomes and

predicting lifecycle maintenance resource requirements.

Many information systems serve their organizations for upwards of fifteen years

(Kalakota and Whinston, 1996) and outlive the tenure of the programmers and IS managers that

develop them (Swanson and Dans, 2000). To forecast lifecycle maintenance outcomes, IS

managers need to deal with currently implemented systems. The system characteristics and

management decisions from system development may no longer be available. Current legacy

systems may vary from those originally implemented. In fact, an information system may

change so much that original characteristics may no longer resemble the current system. Task

and organizational environments can change dramatically during the years an information system

is in productive use. Lifecycle maintenance processes are used to enhance information systems

allowing them to evolve in parallel to their surrounding environment (Pfleeger, 1998). We

recognize these life-long transformation processes as software evolution.

As Swanson and Dans recently observed, lifecycle maintenance activities are forward-

focused procedures striving to lengthen the productive life of an information system (Swanson

and Dans, 2000). Likewise, in this research we focus on prediction of lifecycle maintenance

outcomes to improve lifecycle maintenance management by enhancing predictive models of

maintenance outcomes, i.e. processing errors and maintenance costs.

5 - 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

By sustaining a forward perspective we use information about a current information

system and its recent changes. The objective of our research is to use basic characteristics of the

current system and characteristics o f its recent software evolution to predict lifecycle

maintenance outcomes, i.e. software processing errors and lifecycle maintenance costs. What

effect does software evolution have on future maintenance costs? If two information systems are

described with identical size and complexity, should we expect them to have the same

maintenance costs and error rates? Do their different lifecycle maintenance histories, i.e. their

different patterns of software evolution, affect subsequent error rates and maintenance costs?

In this study we examine the relationship between software evolution as described by

and lifecycle maintenance outcomes. Software evolution is formally defined as the "dynamic

behavior of programming systems as they are maintained and enhanced over their life times"

(Belady and Lehman, 1976). We describe software evolution with two main characteristics, i.e.

lifecycle maintenance profiles and software volatility.

Maintenance profiles describe what type of lifecycle maintenance activities have

occurred, and software volatility describes when changes occur, how large they are, and how

consistently changes permeate the software system. Maintenance profiles are historical patterns

of software maintenance activities. The type of change motivation, i.e. corrective, adaptive,

enhancement and new program creation, categorizes these activities.

We describe software volatility as a multi-dimensional phenomenon with attributes of

periodicity, amplitude and deviation. Periodicity tells us how often software changes. Amplitude

tells use how much software changes. Deviation indicates the relative variance in length of

change intervals for programs in the system.

5 - 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Using the results of this study, researchers can observe the effect of software evolution on

lifecycle maintenance outcomes. IS Managers can apply these results to improve their budgets

for software maintenance resources. With an improved ability to predict software processing

errors and maintenance costs, IS managers can include anticipated system error rates when

looking at decisions concerning software system repair or replacement.

In the next section we combine the relevant literature on software maintenance outcomes

and software evolution to present eight hypotheses as a basis for our proposed model predicting

lifecycle maintenance outcomes. Dependent and explanatory variables are operationalized, and

the model empirically tested using panel regressions. Separate panel regressions estimate model

parameters for prediction of maintenance costs and software processing errors. Our results

indicate that IS managers can use traditional software product attributes and descriptors of

lifecycle maintenance profiles and software volatility to predict software maintenance outcomes.

SOFTWARE MAINTENANCE OUTCOMES
Post-implementation lifecycle maintenance of information systems accounts for as much

as 80% of the lifetime costs of an information system (Bennet, 1996). For many organizations,

lifecycle maintenance activities consume more IS resources than new development (Swanson

and Dans, 2000). The resources expended in lifecycle maintenance can strain budgets and

prevent organizations from having the time and money needed for new software development.

When processing errors occur, managers frequently chase obscure, yet pressing problems with

few diagnostics describing the cause of those problems (Swanson and Beath, 1990). If software

managers could predict the frequency of production problems they will face, they could become

more proactive, and their ability to plan and manage their work would be greatly enhanced.

5 -3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

We examine existing models of software maintenance outcomes. These outcomes

include software processing errors and lifecycle maintenance costs. Each time maintenance

activities modify software there is a change in system processing that can lead to errors. We also

include costs, in dollars and in hours of effort. After examining current models of software

maintenance outcomes, we build our model based on basic characteristics of currently

implemented systems and elements of recent software evolutionary processes.

DRIVERS OF MAINTENANCE OUTCOMES
At any point in time an information system is the cumulation of an implemented

information system and post-implementation software evolution. We start by examining factors

that determine software product characteristics.

Basic System Characteristics
Brooks (1995) describes the basic characteristics of an information system as its

complexity, size and age. Complexity has been shown to be a significant factor contributing to

software maintenance outcomes. Increased complexity has been associated with increased

software errors, increased software faults and increased effort for lifecycle software maintenance

(Shen, et al., 1985; Banker, et al., 1991; Takahashi, 1997, Banker Davis and Slaughter, 1998;

Banker and Slaughter, 2000; Banker, et al., 2000; Graves, et al., 2000). Increased software

complexity is associated with programs that are more difficult to maintain and enhance. Extra

effort is required to understand what the program source code is intended to accomplish and why

it needs to be changed (Heales, 2000). Increased complexity makes it more difficult for

programmers to change existing code or add functionality without disturbing the logical flow of

processing in the original design. Thus, increased complexity will subsequently lead to an

increase in processing errors and increase maintenance costs because the result will be even more

5 - 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

complex programs that are difficult to maintain without causing errors. This leads to the

following hypothesis:

HI: Increased system complexity will increase software processing errors and lifecycle
maintenance costs.

System size and age are inherent attributes of an information system. These are both

system characteristics shown to relate to software processing errors and maintenance costs

(Lehman, et al., 1997; Davis and Olson, 1985; Graves, et al., 2000; Banker, et al., 2000; Heales,

2000; Eick, et al., 2001). We will use measures of software size and average program age as

control variables in this study.

Software Evolution
Software evolution is defined as the "dynamic behavior of programming systems as they

are maintained and enhanced over their life times" (Belady and Lehman, 1976). Software

evolution can be described by the accumulative effect of lifecycle maintenance activities on

information systems after their implementation. Lifecycle modifications are small incremental

changes that gradually transform a system. Rather than having the revolutionary impact of new

system implementation, these changes are evolutionary, gradually transforming information

systems to stay productive for the organization.

Software evolution has been studied from the general systems theory approach for several

decades, e.g. see Lehman and Belady, 1985, etc. Empirical research has led to a series of laws

describing behavior of information systems. Now we use characteristics of software evolution to

help with the IS management problem of predicting lifecycle maintenance outcomes. We

describe software evolution with two main characteristics, i.e. lifecycle maintenance profiles and

software volatility. Lifecycle maintenance profiles describe what types of changes are made to

5 - 5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

the system and drive evolutionary processes. Software volatility measures the extent, timing and

predictability of those changes.

Basic system characteristics and software evolution are used as explanatory variables in

our conceptual model for software maintenance outcomes. Every information system is

subjected to software evolution to one degree or another. We use software volatility to describe

dynamic system behavior, and lifecycle maintenance profiles to describe maintenance processes

driving software evolution.

Lifecycle Maintenance Profiles
Past research has used information system histories and prior maintenance activities to

predict future levels of software maintenance costs and software faults or errors (Biyani and

Santhanam, 1998; Gefen and Schneberger, 1996; Lientz and Swanson, 1980; Banker, et al.,

2000; Banker and Slaughter, 2000). Similarly we seek a quantifiable descriptor of the type of

lifecycle maintenance work previously done to help anticipate future outcomes.

We use software maintenance profiles as attributes describing the processes driving the

transformations occurring as part of software evolution. These activities can be classified

according to their motivation: corrective, adaptive and enhancements (Lientz and Swanson,

1980). We can further classify maintenance activities by functional subcategories, i.e. data

handling, logic, computation, initialization, user interface and module interface (Barry, Kemerer

and Slaughter, 1999).

A number of researchers have presented taxonomies of lifecycle maintenance activities to

describe major types of maintenance work (Swanson and Beath, 1990; Lientz and Swanson,

1980; Pressman, 1992). IEEE standards have listed these as corrective, adaptive and

5 - 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

enhancement Some authors include categories for perfective and preventive maintenance

(Pressman, 1992). The empirical work that has been done tends to report most of the

maintenance effort as perfective (Lientz and Swanson, 19S0, p. 68; Barry, Kemerer and

Slaughter, 1999).

To develop a taxonomy of lifecycle maintenance activities we examine the primary

motivations for software maintenance. Thus, we establish main activity categories corresponding

to the original classifications of corrective, adaptive and enhancement. We add a fourth main

category for new program creation.

Historical patterns of lifecycle maintenance activities are referred to as software

maintenance profiles. Each system has its own history and unique software maintenance profile.

We theorize that different types of maintenance activities will have different effects on future

software processing errors and maintenance costs. Based on software reliability models,

increased corrective activities should lead to reduced future levels of software processing errors

and thus, lower maintenance costs (Lyu, 1996). We state the following hypothesis:

H2: Increased corrective maintenance profiles will decrease software processing errors
and lifecycle maintenance costs.

Adaptive maintenance activities change software programs to conform to changes in their

surrounding environment As opposed to enhancements, adaptive modifications add no new

functionality to an information system. These software modifications are only intended to

preserve the status quo. Continuing to operate a system after it no longer conforms to new

technological circumstances can cost an organization (Truex, Baskerville and Klein, 1998).

Even though an information system may continue to operate without processing errors,

additional expense may be encountered as additional software maintenance or manual processing

5 - 7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

to compensate for a system that is not up-to-date. Thus, adaptive activities would eliminate the

need for this additional software maintenance or manual processing to cover the gap between an

old information system and the current business environment Thus, we state the following

hypothesis:

H i: Increased adaptive maintenance profiles will decrease software processing errors
and lifecycle maintenance costs.

Enhancement activities change software programs by adding new functionality to an

information system. New program creations expand the functionality of a system by adding new

programs to a system. Changing and adding new source code to a system from enhancements or

new programs is likely to introduce software faults and result in increased processing errors for

later periods (Malaiya and Denton, 1999). Increases in processing errors will necessitate

software modiications to correct those newly introduced software faults. We propose the

following hypotheses:

H4: Increased enhancement profiles will increase software processing errors and
lifecycle maintenance costs.

HS: Increased new program creation maintenance profiles will increase software
processing errors and lifecycle maintenance costs.

Software Volatility
Software volatility describes dynamic behaviors by measuring software change. Software

volatility is a characteristic of the dynamic behavior of the programming systems as they evolve,

i.e. as they are maintained and enhanced throughout their productive life spans (Belady and

Lehman, 1976). This lifecycle software change is in many respects inevitable. It is necessary

for systems to keep pace with the changing environments surrounding them (Lehman and

Belady, 1985; Pfleeger, 1998). These evolutionary processes are important Information

5 - 8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

systems that fail these transformations can cause a drag on their organizations, resulting in a cost

of stability (Truex, Baskerville and Klein, 1998). We include software volatility in our model to

determine what its effect on maintenance outcomes.

Prior research has shown that software volatility affects software maintenance costs and

errors (Butcher, 1997; Banker and Slaughter, 2000; Yau and Collofello, 1980,1985; Banker, et

al., 2000). Heales (2000) develops a software volatility index to measure effort spent on deep

structural changes during software change processes. Malaiya and Denton (1999) use analytical

methods to show that software change, i.e. volatility, results in increased levels of software

errors. Other researchers have used empirical studies to show that prior software changes result

in increased amounts of maintenance effort and software errors (Biyani and Santhanam, 1998;

Lientz and Swanson, 1980; Eick, et al., 2001; Banker, et al., 2000).

Software change or volatility is a multi-dimensional phenomena and it should be

described by a multidimensional measure to show how often software changes, how much it

changes and how predictably changes occur. Due to the close ties between information systems

and their environment we use multi-dimensional measures of software volatility based on a

multi-dimensional measure of environmental volatility developed by Wholey and Brittain

(1989). We describe software volatility with a multi-dimensional measure containing

periodicity, amplitude and deviatioa

Periodicity describes how often information systems change. Amplitude describes how

much information systems change. Deviation describes how predictably the systems behave

(Barry, Kemerer and Slaughter, 2001). We define measures that can be calculated at each time

interval, e.g. week, month or quarter, during a system's post-implementation productive life span.

5 - 9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Thus, periodicity, amplitude and deviation can capture variations in lifecycle behavior of

information systems.

Periodicity describes time intervals between software modifications. This is the system-

wide mean of time intervals between software modifications for the time period being studied,

e.g. week or month. We measure periodicity relative to system age to allow analysis across

systems and throughout a system's lifecycle. Increased levels of software modification are

believed to lead to an increase in processing errors (Graves, et al., 2000). Increases in processing

errors will by necessity lead to increased maintenance costs in order to correct the cause of those

errors. As we analyze software volatility we note that decreasing periodicity indicates that

software modifications occur at more frequent intervals. We use periodicity at time t-l to predict

processing errors and maintenance costs at time t. Remembering that shortened intervals

between modifications indicates increased software volatility, we are led to the following

hypothesis:

H6: Decreased periodicity will increase software processing errors and lifecycle
maintenance costs.

Amplitude describes the magnitude of change by measuring the total size of system

modifications each time period. We establish a relative system-level measure of amplitude as

the change in application system size and normalizing by total system size. Several size metrics

are available, including token counts of executable lines of code (LOC), function points, model

objects and entities (Boehm, 1984; Albrecht and Gaffney, 1983; Grady, 1987; Symons, 1988).

We use amplitude as a relative measure of how much software has changed. Increased

amplitude in time period t-l is used to predict counts of processing errors and lifecycle

maintenance costs for time period /. More modifications, i.e. greater amplitude, in time period t-

5-10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

/ leads to a greater likelihood of introduction of software errors, resulting in an increase in

software processing errors and subsequent maintenance costs for time period t. This leads to the

following hypothesis:

H7: Increased amplitude will increase software processing errors and lifecycle
maintenance costs.

Deviation describes the variance of the time intervals between software modifications.

This measure indicates how consistent the change interval is for programs in an information

system. A high deviation indicates that the system has a few programs modified at short

intervals and some with very long intervals. A high deviation indicates that intervals between

software modifications vary widely across programs in the system. The behavior of the system

is harder to predict Expertise needed for software changes will vary as well. This could lead to

an increase in mistakes while source code is changed, and unnecessary effort expended when

programmers try to support a larger subset of programs in the system. This could lead to

increased software processing errors and increased maintenance costs. Therefore, we pose the

following hypothesis:

H8 : Increased deviation will increase software processing errors and lifecycle
maintenance costs.

Control Variables
Prior research indicates that as application software usage increases, so does the detection

of processing errors (Biyani and Santhanam, 1998; Yuen 1985; Dekleva, 1992). System usage

influences the number of software processing errors uncovered (Banker, et al., 2000). Software

that is not executed will not have any errors detected, nor will it require software maintenance.

Thus, we include application usage as a control variable.

5-11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Our eight hypotheses are summarized in Table 1. Directional relationships are

diagrammed in Figure 1. Our predictive model for software maintenance outcomes will be

empirically tested and results summarized in the next two sections.

system size (t-l)

system age (t-I)

complexity (t-1)

^software product y

profiles (t-l)

y
application

usage(t)

software volatility:
periodicity (t-l)
amplitude (t-l)
deviatioa (t-l)

\ software evolution /

s lifecycle
f maintenance ^

/ outcomes

software
processing

error rate(t)

lifecycle
maintenance

costs(t)

\

/

■^stem usage

Figure 1: Model of Predictors of Maintenance Outcomes

METHODOLOGY
To test the hypotheses in Table 1 we estimate the following models:

5 - 1 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Error-rate, = f a - 0/ complexity,./ - fo corrective profile,. / - 0$ adaptive profile,./ -
0 4 enhancement profile,./ 0 s new program creation profile hi - fa periodicity,.}
+ 0 7 amplitude,.} + 0 s deviation,./ t 0 9 system size ~ &

Costs, = 0o ~ 0i complexity,./ - 0 2 corrective profile,.} - 0} adaptive profile,.i * 0 4

enhancement profile^ - 0 s new program creation profile,.} - fa periodicity,./ -
0 7 amplitude,./ + fa deviation,./ + fa system size * 0 /o application usage - e

Hypothesis Test
HI Increased system complexity will increase software processing errors and lifecycle

maintenance team costs.
HI: Pi > 0

H2 Increased corrective maintenance profiles decrease software processing errors and lifecycle
maintenance costs.

H2: pi < 0

H3 Increased adaptive maintenance profiles decrease software processing errors and lifecycle
maintenance costs.

H3: Pj < 0

H4 Increased enhancement profiles will increase software processing errors and lifecycle
maintenance costs.

H4: p4 > 0

H5 Increased new program creation profiles will increase software processing errors and lifecycle
maintenance costs.

H5: pj > 0

H6 Decreased periodicity will increase software processing errors and lifecycle maintenance costs. H6: P6 < 0
H7 Increased amplitude will increase software processing errors and lifecycle maintenance costs. H7 : p7 > 0
HS Increased deviation will increase software processing errors and lifecycle maintenance costs. H8: P« > 0
Table 1: Hypotheses to be tested

Research site:
The research site is a large national retailer with a software portfolio of 23 legacy systems

of 3500+ programs. The retailer has a large, centralized Information Systems (IS) department

that handles information processing for all of its various department stores. The Retailer’s IS

department has separate development and maintenance units. Software maintainers keep a

detailed log of every modification made to each module by recording implementation date,

purpose, type of change and programmer responsible.

Other available characteristics of each program include measures of system size, age and

complexity. Application usage statistics include number and types of transactions processed

(online vs. batch). These factors are combined with outcome measures for processing errors and

maintenance costs.

5-13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Measures
Operational definitions for each of the model's dependent and independent variables are

listed in Table 2. Our predictive model uses explanatory variables for time period t-l to predict

outcomes in time period t.

Software Maintenance Outcomes
Maintenance outcomes are measured as software processing error rates and maintenance

costs. Counts of software processing errors are token counts of abnormal terminations during

transaction processing, i.e. abends. We measure software processing error rate as the number of

abends per transaction processed (# abends / # transactions). Lifecycle maintenance costs are

measured as hours of effort expended for all lifecycle maintenance activities each quarter for

each system of the software portfolio.

Basic System Characteristics
We include software complexity as a key descriptor of a system. Because an information

system is conceived and created as a tool for problem solution, the complexity of a system

reflects the complexity of the task it addresses. Thus, descriptors of cognitive complexity

describe the complexity of a problem, as well as the complexity of its solution

Cognitive complexity breaks system complexity into three types: coordinative,

component and dynamic complexity (Wood, 1986; Banker, Davis and Slaughter, 1998).

Coordinative complexity examines the logic flow within each program of the system.

Component complexity examines the data intensity of a system. Dynamic complexity

corresponds to the overall complexity of the entire system by measuring the linkages between

programs or elements in the system.

5-14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Coordinative complexity is operationalized as the system-wide total of cyclomatic

measures of logic flow complexity (Gill and Kemerer, 1991). We operationalize component

complexity as the system-wide number of unique operands in the system, i.e. Halstead's n2

summed over all programs in a system. Dynamic complexity is operationalized as the system-

wide total number of program calls. Each of the complexity measures is normalized with respect

to system size.

System size and age are control variables in our model. In addition, system size is used

to normalize complexity measures.

Lifecycle Maintenance Profiles
Lifecycle maintenance profiles summarize historical patterns of the types of lifecycle

maintenance activities that have occurred. We use four main activity categories relating to the

motivation for each system modification: corrective, adaptive, enhancement and new program

creation. Our empirical data provides a detailed log allowing classification of system

modifications. The centralized systems development and maintenance staff maintained in-house

standards requiring a record of who made the who made each software modification, when it was

implemented, what was modified and why. These maintenance logs were maintained in a special

section of the source code in each program throughout the software portfolio. System counts for

each category and subcategory are aggregated by system.

We operationalize lifecycle maintenance profiles to indicate the main type of activity

occurring in each system each time period. Once again, we use profiles from time period t-l to

predict outcomes in time period t. To do this, we count activities for each main activity category,

and calculate the proportion of lifecycle maintenance activities for each category that time

5 - 1 5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

period. We established four binary variables to indicate which main category of lifecycle

maintenance activity was predominant for each system in that period.1 For example, suppose

system XXX had ten system modifications this month. Five (50%) were enhancements, three

(30%) were new program creations, one (10%) was corrective and one (10%) was adaptive. We

set our four profile variables as follows:

Profile - corrective 0
Profile - adaptive 0
Profile - enhancement I
Profile - new program creation 0

As with the other explanatory variables in our model, we use t-l profile values to predict

maintenance outcomes in time period t.

Software Volatility
Software evolution is described by two attributes: software volatility and lifecycle

maintenance profiles. We describe software volatility with normalized measures of periodicity,

amplitude and deviation. Periodicity is operationalized as the mean time interval between

system modifications. Amplitude is the total change in system size normalized with respect to

total system size. Deviation is the variance in the lengths of time intervals between system

modifications. Periodicity and deviation are normalized with respect to system age.

Periodicity, amplitude and deviation are aggregate measures calculated for each time

period in our empirical data. Empirical data to predict maintenance costs are aggregated

quarterly. Tests of models predicting software processing errors are aggregated monthly. We use

values of periodicity, amplitude and deviation for time period t-l to predict maintenance costs in

time period /.

1 Ties are handled by assigning the value to the first non-zero proportion.

5 - 1 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Construct Operational
variable

Description Unit of analysis
varies....

HI System
complexity

Normalized
Component
complexity

System-wide count o f Halstead's n2 (unique
operands) normalized by system size

By system by
quarter

Normalized
coordinative
complexity

System-wide count o f McCabe's
cyciomatics normalized by system size

Normalized
dynamic
complexity

System-wide count of program calls
normalized by system size

H2
H3
H4
H5

Software
maintenance
profiles

Profile o f main
activity for
software lifecycle
maintenance

Binary variable to indicate this is most
prevalent type o f lifecycle maintenance
activity this quarter - there are four variables
for each o f four main categories of
maintenance activities (corrective, adaptive,
enhancement, new program creation)

By system by
quarter

H6 Software
volatility

Periodicity Mean time interval between software
modifications normalized with respect to
system age

By system by
quarter

H7 Software
volatility

Amplitude Change in system size normalized by
system size

By system by
quarter

H8 Software
volatility

Deviation Variance in length of time intervals between
software modifications normalized with
respect to system age

By system by
quarter

Table 2: Operational Explanatoiy Variables
Data

The retailer's software portfolio includes 23 applications, 21 with batch processing and 18

with online processing. A detailed log recorded all lifecycle maintenance activities in each of the

3500+ programs. Data include what modifications were made, who made them and when each

software modification was implemented. Quarterly data is available for maintenance costs,

maintenance effort, vendor costs, transactions processed online and batch, and processing errors

online and batch. Using these data a panel data set was built for the 23 applications covering 10

quarters. Two systems were not in production for the full 10 quarters. Missing values caused

some observations to have irreconcilable values. These records were dropped prior to regression

estimates. This leaves an unbalanced panel with 192 observations.

5 - 1 7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Total monthly processing errors are available for each system for 3 1 months. Processing

errors, i.e. abends, are categorized separately for online and batch processes. Likewise, we tested

our model with separate regression estimates of online and batch abends using an unbalanced

panel data set with 688 observations.

RESULTS
Descriptive Statistics

Table 3 lists summary statistics for the monthly panel data set Frequency counts for the

binary profile variables are listed in Table 4. Summary statistics for the relevant variables in the

quarterly panel data set are listed in Table S. Table 6 lists frequency counts for the binary profile

variables in the quarterly panel data set. Correlations are listed in Tables 7 and 8.

Variable N Mean Sid. Dev. Minimum Maximum
online transactions (t) 665 603136.8 972288.4 0 9167362
batch transactions (t) 665 764.7235 1073.836 0 7184.2
Total function points (t-l) 665 2364.647 1603.668 273 5482
Average program age (in months) 665 71.61239 48.63827 18.55263 230.5
Total Cyclomatics / total LOC (t-l) 665 0.0516164 0.0110005 0.0353499 0.0810833
Total n2 / total LOC (t-l) 665 0.2013791 0.553793 0.1239131 0.3558856
Total calls / total LOC (t-l) 665 0.0082747 0.0048862 0.0008251 0.0156295
Software volatility - periodicity 665 0.265109 0.3805316 0 1
Software volatility - amplitude 665 0.0080517 0.042706 0 0.8145953
Software volatility • deviation 665 0.0076945 0.0194198 0 0.1994759
Table 3: Summary statistics of monthly panel data set

5 - 1 8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Profile (t-l) N Freq = 0 Freq = 1

oll£

% = 1
Profile • corrective 665 639 26 96.09 3.91
Profile • adaptive 665 655 10 98.50 1.50
Profile - enhancement 665 231 434 34.74 65.26
Profile - new programs 665 632 33 95.04 4%

Profile enhancement
subcategorv (t-l)

N I II © Freq = 1

©ll£

% = 1

Data handling 665 519 146 78.05 21.95
Logic 665 415 250 62.41 37.59
Computation 665 662 3 99.55 0.45
Initialization 665 662 3 99.55 045
User interface 665 643 22 96.69 3.31
Module interface 665 665 0 100.00 0.00
Table 4: Frequency counts of Binary variables - monthly panel

Variable N Mean Sid Dev. Minimum Maximum
Ln(lifecycie maintenance hours) (t) 180 4.756355 4.83937 -18.42068 7.907651
Ln(# batch transactions) (t) 194 4.528112 7.755914 •18.42068 9.807131
Ln(# online transactions) (t) 194 7.865331 12.35231 -18.42068 16.88S41
Total function points (t-l) 194 2385.247 1657.912 273 5482
Average program age (in quarters) 199 32.95181 18.29137 7.3333 72.5
Total Cyclomatics/total LOC (t-l) 194 0.0529539 0.010193 0.0386465 0.0810837
Total n2 / total LOC (t-l) 194 0.2042366 0.0542459 0.1388885 0.3558856
Total calls / total LOC (t-l) 194 0.0076707 0.0049431 0.0008251 0.0154845
Software volatility - periodicity 194 0.2048901 0.3086835 0.007 1
Software volatility • amplitude 194 0.0311604 0.0973654 0 0.8268304
Software volatility - deviation 194 0.0172412 0.0360195 0 0.3100103
Table 5: Summary statistics of quarterly panel data set

Profile (t) N

0ll1

Freq = I * ii © % = 1
Profile - conective 194 187 7 96.39 3.61
Profile - adaptive 194 192 2 98.97 1.03
Profile - enhancement 194 36 158 18.56 81.44
Profile - new programs 194 187 7 96.39 3.61

Profile enhancement
subcategorv (t-l)

N Freq® 0 Freq = 1

©It£

% = I

Data handling 194 147 47 75.77 24.35
Logic 194 124 70 63.92 36.08
Computation 194 187 7 96.39 3.61
Initialization 194 190 4 9794 2.06
User interface 194 188 6 96.91 3.09
Module interface 194 194 0 100.00 0.00
Table 6: Frequency counts of Binary Variables - quarterly panel

5 - 1 9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Monthly panel data act Pro­
file-

total Aver- Total Total Total
functio age cyclo- n 2 1 calls /
n points prog- madcs/ total total

(t-I) run age total LOC LOC COtTeC
(t-1) LOC (t-1) (t-I) tive

(t-1) (t-1)

Avenge program age (t-I) -0.2104 I

Totalcydom adcs/total LOC (t-l) -0.1161 0.1917 1

Total n 2 /to ta l LOC (t-1) -0.2555 0.0311 0.6081 1

Total calls / total LOC (t-1) 0.1110 -0.2397 0.5571 -0.7124

Profile-corrective(t-1) -0.0324 -0.0049 0.0152 -0.0324

Profile - adaptive (t-1) 0.0243 -0 0566 0.0467 0.0847

Profile - enhancement (t-l) 0.0743 Q.1654 -0.1454 -01843

Profile - new programs (t-l) 0.144! -0.1081 0.0573 -0.0632

Software volatility - periodicity (t-1) -0.2521 -0.1728 0.1207 0.4348

Software volatility-amplitude (t-l) 0.1128 -0.0682 -0.0406 -0.0679

Software volatility-deviation (t-1) 0.0810 -0.1314 -0.0073 -0.1492

Pro- Pro- Pro- Soft- Soft-
file • file - fiie - ware ware

adap- en- new voiatil volatil
tive hance pro- ity - ity -

(t-1) -mem grams period amp-
(t-1) (t-1) icity litudc

(t-l) (t-1)

0.0330

-0.0840

-0.3519

-0.0427

-0.0354

-0.0600

-0.0368

I

-0.0257

-0.3519

■0.0427

-0.0354

-0.0600

-00368

1
-0.2398 1

-0.029! -0.3975 1

0.0071 -0.5351 -0.1078 1

-0.0170 -0.1194 0.2579 -0.1259 1

0.1154 0.0823 -0.0128 0.0363 0.0264

Table 7: Correlations for monthly panel data

Quarterly panel data set Pro­
file-

K batch 8 total Aver- Total Total Total
transac- online functio age cyclom n2 ' calls /
lions (t) transac- n points prog- a tics / total total

tions(t) (t-1) ram age total LOC LOC c 0 (r*c
(t-1) LOC (t-1) (t-1) tive

(t-I) (t-1)

onlinr tnrasne-dons (0 01770 1

Total function points (t-1) 0 2752 0 1508 1

Average program age (t-1) 0 5579 0 0702 0 2169 I

Total cyclomatics / total LOC (t-1) -0 0759 0 0228 -0 2961 -00868 1

Total n2/tn tal LOC (t-1) 0 0044 0 1218 4)2306 0 0745 0 5468 I

Total calls/total LOC (t-1) 0 0717 0 0557 0 2662 0 2382 -0 5803 -0 6168

Profile-conrctive(t-1) -0 1194 4)1248 4)0343 4)1766 00622 00702

Profile-adaptive(t-l) 4)0291 4)0399 4).08I4 41.0811 41.0655 -0.0746

Profile-enhancement (t-l) 0.1689 0.1888 0.0839 0.2448 0.2773 4) 0975

Profile-new programs (t-1) 41.0820 -0.0319 0.1001 4).0691 0.1018 4).0771

Software volatility-periodicity (t-l) -0.2127 -0.1910 -0.2171 -0.2992 0.3553 0.1806

Software volatility-amplitude(t-1) 4).0637 4) 0465 0.0077 4).084I 0.0299 -0.0349

Software volatility-deviation (t-1) 4).2!64 -0.0798 4).0694 4)J0S5 0.1507 -0.0151

Pro- Pro­
file - file -

adap- en-
tive honce

Pro- Soft- Soft-
fiie - wire ware
new volatil volaiil
pro- ity - ity -

(t-1) -ment grains period amp-
(t-1) (t-1) icity litude

(t-1) (t-l)

I

41.1728 1

0.0585 4) 0153 I

0.1706 -0.5685 -0.2112 1

0.0521 -0.0309 -0.0115 41.4260 I

-0.2665 -0.3945 0.0585 4)6633 0 1020 I

-0.0795 0.2936 -0.0229 -02133 0.1597 0.2465 I

41.0489 -0.0237 0.0840 0.0766 4) 0621 0.1065 0.0148

Table 8: Correlations for quarterly panel data

5 -2 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Parameter Estimates
Model parameters were estimated with generalized least square regressions for panel data

sets. Two separate regressions were estimated one using monthly data for predicting software

processing error rates, and one using quarterly data for predicting lifecycle maintenance costs.

As is common with pooled time-series data sets, autocorrelation was indicated by diagnostic

tests, i.e. the Breusch-Godfrey test for serial correlation (Johnston, 1984). To correct for this we

used panel-specific AR1 methods for the correction of serial correlation. This provides separate

AR1 correction for each group in the panel, i.e. each system in the portfolio. The same

correction for serial correlation was used in both regression estimates.

Table 9 reports parameter estimates for software processing errors. There is no

commonly established functional form to describe the relationship between maintenance

outcomes and characteristics of software evolution and basic characteristics. A linear

transformation produced a better fit than either a semi-log or log-linear transformation. We

elaborate on our results in the discussion section.

5 - 2 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Predict: processing error rate
N = 522
Log likelihood = 2196.769
Wald = 113.13

Estimated
coefficient

p-value • • • * p £ 0.001
• • * p £ 0.05
• * p £ 0.10

Hypothesis
tested/
supported?

Constant 0.0126385 0.000 • • •
Total function points (t-1) •0.0000005 0.000 **•
Average program age (t-l) -0.0000161 0.002 • • •

Total cyclomatics (t-1) normalized by LOC -0.0761168 0.080 » HI no
Total n2 (t-1) normalized by LOC 0.0042215 0.543 HI
Total calls (t-1) normalized by LOC •0.3143885 0.000 *** HI no
Profile - corrective (t-1) -0.0030525 0.003 H2 ves
Profile - adaptive (t-1) •0.0036036 0.005 ••• H3 yes
Profile • enhancement (t-1) -0.0029690 0.000 • • • H4 no
Profile - new program creation (t-l) -0.0045835 0.000 H5 no
Software volatility - periodicity (t-1) -0.0047772 0.000 ••* H6 yes
Software volatility • amplitude (t-1) 0.0452957 0.000 H7 yes
Software volatility - deviation (t-1) 0.0030350 0.705 H8
Table 9: Prediction of software processing error rate using monthly panel data

Predict: ln(Iifccycle maintenance hours)
N = 199
Log likelihood = -573.9624
Wald = 85.91

Estimated
coefficient

p-value • • • * p £0.001
• • * p £ 0.05
* » p £ 0 . 1 0

Hypothesis
tested/
supported?

Constant 25.8279400 0.000 • • •
Usage - transactions, batch (t) 0.0006823 0.153
Usage - transactions, online (t) -0.0000005 0.190
Total function points (t-1) 0.0000143 0.968
Average program age (t-l) 0.0533362 0.421
Total cyclomatics (t-1) normalized by LOC 170.6134000 0.027 • • HI yes
Total n2 (t-1) normalized by LOC •134.3394000 0.000 • • • HI no
Total calls (t-1) normalized by LOC -1016.9020000 0.000 HI no
Profile - corrective (t-1) 2.1484380 0.281 H2
Profile - adaptive (t-1) -0.5163811 0.883 H3
Profile - enhancement (t-1) -1.1262410 0.496 H4
Profile • new program creation (t-1) 0.8682899 0.622 H5
Software volatility - periodicity (t-1) -5.0545150 0.014 • • H6 yes
Software volatility - amplitude (t-1) 6.5823710 0.048 ** H7 yes
Software volatility - deviation (t-1) 0.9321104 0.921 H8
Table 10: Prediction of maintenance costs using quarterly panel data

The results of the regression estimates for maintenance costs are listed in Table 10. A

test for type of distribution function for maintenance costs showed they were not normally

5 - 2 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

distributed.2 A semi-log transformation was used for the cost panel regressions after

confirmation with the Box-Cox test for data transformation (Greene, 1997; Neter, Waserman and

Kutner, 1990). Our results support hypotheses H6 and H7, with mixed results for HI.

Inferences drawn from these results will be expanded in the discussion section.

DISCUSSION
The objective of this research is to determine if IS managers can use attributes of an

information system and its evolutionary record to forecast software maintenance outcomes, i.e.

maintenance costs and processing errors. By recognizing the progressive function of lifecycle

maintenance we focus our research on the attributes of an information system to see what we can

learn from aspects of the system's recent software evolution. We combine our understanding of

quantifiable characteristics o f software evolution with basic system characteristics to build a

predictive model for lifecycle maintenance outcomes. This work examines the effect of these

explanatory variables with separate model regression estimates for software processing errors

and maintenance costs.

Explanatory variables chosen for our investigation represent information available to IS

managers charged with responsibility for system lifecycle support. An improved ability to

predict processing errors and maintenance costs can assist managers with resource planning, staff

assignments and cost controls. Enhanced predictions of costs and errors can increase an IS

manager's ability to make repair / replace decisions for information systems.

First, we examine the effect basic system characteristics have on software maintenance

outcomes. Tests of hypothesis HI indicate we can use some types of system complexity to

2 Maintenance costs are measured as hours o f effort spent on maintenance.

5 - 2 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

predict maintenance outcomes. We examine the effects of coordinative, component and

dynamic complexity as explanatory variables in our predictive model (Table 11).

Explanatory variable Errors Costs
t Coordinative complexity - normalized cyclomatics 4 t
t Component complexity = normalized n2 Ns 4
t Dynamic complexity = normalized calls 4

T -----“ T
4

Component and dynamic complexities decrease costs and processing errors, while

coordinative complexity increases costs and processing errors. Systems with higher levels of

component complexity, i.e. normalized n2 = total n2/total LOC, are data intensive and, thus,

more stable than systems with lower levels of data intensity (Martin, 1989; Hoffer, George and

Valacich, 1996). These systems would have lower errors rates, require fewer modifications and

fixes, and be less expensive to maintain. Increased levels of dynamic complexity, i.e.

normalized calls = total calls/total LOC, indicate more structured system design with fewer

software faults and easier maintenance. Our results indicate that processing errors will decrease

and maintenance costs increase when there is an increase in coordinative complexity, i.e. when

normalized cyclomatics increases where normalized cyclomatics - total cyclomatics/total LOC.

Coordinative complexity places a higher burden on maintenance programmers. Modifications

take longer to implement and, therefore, result in higher costs. At the same time, it may be that

the increased time and care devoted to those modifications are completed with fewer errors.

Thus, we have mixed support for hypothesis HI.

Next we examine the effect software evolution can have on software maintenance

outcomes. Our model uses two main characteristics of software evolution: lifecycle maintenance

profiles and software volatility. We use lifecycle maintenance profiles to describe the type of

5 - 2 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

activities occurring in software evolutionary processes. We analyze our results for hypotheses

H2 though H5 in Table 12.

Explanatory variable Errors Costs
t Profile - corrective (t-l) 1 Ns
t Profile - adaptive (t-1) 1 Ns
t Profile • enhancement (t-1) 1 Ns
t Profile - new program creation (t-1) I Ns

Table 12: Effect of lifecycle maintenance profiles on maintenance outcomes
As expected, increases in corrective and adaptive maintenance activities will decrease

future processing errors. Hypothesis H2 and H3 for software processing errors are supported.

Hypothesis H4 predicts that increasing enhancements will increase both processing errors and

maintenance costs. Our results indicate that an increase in enhancements at time t-l will result in

a reduction of processing errors at time /. Hypothesis H5 predicts that an increase in new

program creations will increase both processing errors and maintenance costs. Our results

indicate that an increase in new program creations at time t-1 will decrease processing errors at

time t. Our parameter estimates support hypotheses H2 and H3, and contradict hypotheses H4

and H5.

Software volatility is described with three dimensions, periodicity, amplitude and

deviation. Tests of hypotheses H6 through H8 will indicate whether we can use dimensions of

system volatility to predict lifecycle maintenance outcomes. As shown in Table 13, our results

provide support for hypotheses H6 and H7..

Explanatory
variable

Errors Costs

t Periodicity 1 i
t Amplitude t t
t Deviation ns Ns

Table 13: Effect of software volatility on maintenance outcomes

3 Empty cells in tables 11-13 indicate estimated parameters were insignificant, i.e. p-value > 10%.

5 - 2 5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

As expected, decreased periodicity will increase error rates and maintenance costs.

Decreasing periodicity indicates the software is more volatile, i.e. more software modifications

are occurring. More software modifications result in a higher likelihood of errors. Increases in

errors will require software maintenance for program fixes with an increase in maintenance

costs.

Hypothesis H7 is supported by empirical results for both processing errors and

maintenance costs. Increasing amplitude, i.e. relative size of software change, will increase the

rate of occurrence of errors.

Four of eight hypotheses were supported, one had mixed support and two hypotheses

were contradicted. Table 14 summarizes test results for all eight hypotheses.

Hypo­
thesis

Support?

HI Mixed Increased system complexity will increase software processing errors and lifecycle
maintenance costs.

H2 Yes Increased corrective maintenance profiles decrease software processing errors and lifecycle
maintenance costs.

H3 Yes Increased adaptive maintenance profiles decrease software processing errors and lifecycle
maintenance costs.

H4 No Increased enhancement profiles will increase software processing errors and lifecycle
maintenance costs.

H5 No Increased new program creation profiles will increase software processing errors and
lifecycle maintenance costs.

H6 Yes Decreased periodicity will increase software processing errors and lifecycle maintenance
costs.

H7 Yes Increased amplitude will increase software processing errors and lifecycle maintenance
costs.

H8 Decreased deviation will increase software processing errors and lifecycle maintenance
costs.

Table 14: Summary of tests of hypotheses

CONCLUDING REMARKS
Change is inevitable. We recognize that to keep pace with changing requirements

information systems must also change and evolve. Slow incremental software transformations

5 - 2 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

can be described by software evolution. Some authors equate software evolution to software

lifecycle maintenance.

We describe software evolution with software volatility and lifecycle maintenance

profiles. Lifecycle maintenance profiles describe what type of work is being done. Software

volatility measures how often modifications are made (periodicity), how much is modified

(amplitude), and how consistently programs are modified in a system (deviation). We use these

characteristics with the basic system characteristics of an information system to predict lifecycle

maintenance outcomes, i.e. maintenance costs and software processing errors.

Implications for research
Post-implementation software maintenance activities account for most of the total

lifetime costs of software systems as they continue to evolve. It is important to understand the

drivers of these maintenance outcomes and improve a manager's ability to control these costs. If

software evolution, i.e. software volatility and lifecycle maintenance profiles, affect maintenance

outcomes, IS managers need to know.

The objective of this research is to determine if software maintenance outcomes, i.e.

errors and costs, are driven by information system characteristics and descriptors of software

evolution. We developed a conceptual model based on eight hypotheses describing the

relationships among software maintenance outcomes and information system characteristics,

lifecycle maintenance profiles and software volatility.

Our analysis demonstrates that we can use our knowledge of system characteristics and

recent software evolution, to predict maintenance costs and processing errors

5 - 2 7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Implications for practice
In discussions of software volatility we often assume that software volatility, i.e. software

change, is bad, should be prevented and that it leads to increased costs. We must be careful not

to jump to conclusions. Leaving information systems unchanged can actually cause problems if

they no longer satisfy the information requirements of their organizations. Another challenge for

IS managers is that information systems generally have a longer tenure than the programming

team assigned to maintain them. Traditional models explaining software maintenance costs and

forecasting processing errors use explanatory variables determined during system development

and implementation. IS managers must deal with the current information system. Choices about

buying off-the-shelf software, CASE tools and support team staffing may not even be available.

This work provides an IS manager with information about the relationships among the

current information system, its recent change history and future lifecycle maintenance outcomes,

i.e. maintenance costs and software processing errors. An understanding of the overall

evolutionary processes and their relationship with future maintenance costs and processing errors

can assist managers in forecasting software maintenance budgets and workload. Improvements

in the prediction of these outcomes will improve managers' abilities to make the repair / replace

decision when considering replacement of aging information systems with newer technologies.

Contributions
This work extends our knowledge of the relationship between prior lifecycle maintenance

activities and future maintenance outcomes. Researchers can use this as a motivation for further

work in describing and analyzing the type, sequence, quantity and timing of maintenance

activities.

5 - 2 8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

REFERENCES
Albrecht, A.J. and Gaffney, J.E. Jr., “Software Function, Source Lines of Code, and

Development Effort Prediction: A Software Science Validation”, IEEE Transactions on
Software Engineering. Vol. 9, No. 6, Nov. 1983, pp. 639-648.

Banker, R.D., Datar, S.M., Kemerer, C.F., and Zweig, D., "Software Complexity and
Maintenance Costs", Software Project Management: Readings and Cases. C.F. Kemerer,
(Ed.) Irwin Book Team, Chicago IL, 1997, pp. 521-538. .(reprinted from 1991)

Banker, R.D., Datar, S.M., Kemerer, C.F., and Zweig, D., "Software Errors and Software
Maintenance Management", Information Technology and Management forthcoming,
2000.

Banker, R., Davis, G.B., and Slaughter, S.A., "Software Development Practices, Software
Complexity, and Software Maintenance Performance: A field study", Management
Science. Vol. 44, No. 4, Apr. 1998.

Banker, R.D., and Slaughter, S. A., "The Moderating Effects of Structure on Volatility an
Complexity in Software Enhancement", Information Systems Research. September 2000,
Vol. 11, No. 3, pp. 219-240.

Barry, E.J., Kemerer, C.F., and Slaughter, S.A., "An Empirical Analysis of Software Evolution
Profiles and Outcomes", Proceedings of the International Conference on Information
Systems. Charlotte, NC, December 1999.

Barry, E.J., Kemerer, C.F., and Slaughter, S. A., "A Multidmensional Measurement of Software
Volatility", CMU - GSIA. working paper, 2001.

Belady, L.A., and Lehman, M.M., A Model of Large Program Development", IBM Systems
Journal. No, 3,1976, pp. 225-252.

Bennet, K„ "Software evolution: past, present and future", Information and Software
Technology. Vol. 39, No. 11, Nov. 1996, pp. 673-680.

Biyani, S., and Santhanam, P., Exploring defect data from develpment and customer usage on
software modules over multiple releases, Yorktown Heights, NY, IBM T. J. Watson
Research Center, 1998.

Boehm, B.W., "Software Engineering Economics", Software Project Management: Readings and
Cases. C.F. Kemerer, (Ed.) Irwin Book Team, Chicago IL, 1997, pp. 55-85

Brooks, F.J., The Mythical Man-Month. Addison-Wesley Publishing Co., 1995.

Butcher, G., Addressing Software Volatility in the System Life Cvcle. PhD Dissertation,
Colorado Technical University, 1997, UMI#9815557.

Davis, G.B, and Olson, M.H., Management Information Systems: Conceptual Foundations,
Structure, and Development, 2nd Edition, McGraw-Hill Book Company, 1985.

Dekelva, S.M. "The Influence of the Information Systems Development Approach on
Maintenance", MIS Quarterly. September 1992, pp. 355-372.

5 - 2 9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Eick, S.G., Graves, T.L., Karr, A.K., Marron, J.S., and Mockus, A., "Does Code Decay?
Assessing the Evidence from Change Management Data", IEEE Transactions on
Software Engineering. January 2001, Vol. 27, No. I, pp. 1-12.

Grady, R.B., “Measuring and Management Software Maintenance”, IEEE Software. Vol. 4, Sept
1987, pp. 35-45.

Gefen, D., and Schneberger, S.L., "The Non-Homogeneous Maintenance Periods: A Case Study
of Software Modifications", Proceedings of the IEEE Conference on Software
Maintenance. 1996, Monterey, CA.

Gill, G.K., and Kemerer, C.F., "Cyclomatic Complexity Density and Software Maintenance
Productivity". IEEE Transactions on Software Engineering. Vol. 17, No. 12, December,
1991, pp.1284-1288.

Graves, T.L., Karr, A.K., Marron, J.S., and Siy, H., "Predicting Fault Incidence Using Software
Change History", IEEE Transactions on Software Engineering. July 2000, Vol. 26, No. 7,
pp. 653-661.

Greene, Wm H., Econometric Analysis, third edition. Prentice Hall, Upper Saddle River, NJ,
1997.

Heales, J., "Factors Affecting Information Systems Volatility", ICIS 2000 Proceedings. Brisbane
, Australia, December 10-13,2000, forthcoming.

Hoffer, J.A., J.F. George, and J.S.Valacich, 1996, Modem Systems Analysis and Design. The
Benjamin/Cummings Publishing Company, Inc., Reading, MA.

Johnston, J., Econometric Methods. Third Edition. McGraw-Hill, Inc., New York, 1984.

Kalakota, R., and Whinston A.B., Electronic Commerce: A Manager’s Guide, Addison-Wesley,
Reading, MA, 1996.

Kemerer, C.F. and Slaughter, S.A., "Methodologies for Performing Empirical Studies: Report
from the International Workshop on Empirical Studies of Software Maintenance",
Empirical Software Engineering. Vol. 2, No. 2,1997(1), pp. 109-118.

Kemerer, C.F. and Slaughter, S. A., "Determinants of Software Maintenance Profiles: An
Empirical Investigation", Journal of Software Maintenance. Vol. 9,1997(2), pp. 235-251.

Kemerer, C.F. and Slaughter, S.A., "A Longitudinal Analysis of Software Maintenance
Patterns", ICIS 1997 Proceedings.

Lehman, M.M., and Belady, L.A., Program Evolution: Processes of Software Change. Academic
Press, London, 1985.

Lehman, M.M., Ramil, J.F., Wemick, P.D., Perry, D.E. and Turski, W.M., "Metrics and Laws of
Software Evolution • The Nineties View", Metrics *97. the Fourth International Software
Metrics Symposium. 1997, Albequerque, NM.

5 - 3 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Lientz, B.P., and Swanson, E.B., Software Maintenance Management Addison-Wesiey,
Reading, MA, 1980.

Lyu, M.R., Handbook of Software Reliability Engineering. IEEE computer Society Press, Los
Alamitos, CA, 1996.

Malaiya, Y.K., and Denton, J., "Requirements Volatility and Defect Density", Proceedings 10th
International Symposium on Software Reliability Engineering (Cat. No. PR0044), p.
xii+304,285-94. ISBN 0760594434, IEEE Computer Society, Los Alamitos, CA

Martin, J., Information Engineering: Book I Introduction. Prentice Hall, Englewood Cliffs, NJ,
1989.

Neter, J., Wasserman, Wm, and Kutner, M.H., Applied Liner Statistical Models Regression,
Analysis of Variance, and Experimental Design, 3rd Edition, Richard D. Irwin, Inc., Burr
Ridge, IL, 1990.

Pfleeger, S., "The Nature of System Change", IEEE Software. Vol. 15, No. 3, May-June 1998,
pp. 87-90.

Pressman, R.S., Software Engineering: A Practioner’s Approach. 3rd Edition, McGraw-
Hill,New York, NY, 1992.

Shen, V.Y., Yu, T.J., Thebaut, S., and Paulsen, L.R., “Identifying Error-Prone Software - An
Empirical Study”, IEEE Transactions on Software Engineering. Vol. SE-11, No. 4, April,
1985, pp. 317-323.

Swanson, E.B. and Beath, C.M., "Departmentalization in Software Development and
Maintenance", Software Project Management: Readings and Cases. C.F. Kemerer, (Ed.)
Irwin Book Team, Chicago IL, 1997, pp. 539-553. (Reprinted from 1990)

Swanson, E. B., and Dans, E., "System Life Expectancy and the Maintenance Effort: Exploring
their Equilibrium", MIS Quarterly. June, 2000, Vol. 24, No. 2, pp. 277-297.

Symons, C.R., “Function Point Analysis: Difficulties and Improvements”, IEEE Transactions on
Software Engineering. Vol. 14, No. 1, Jan. 1988, pp. 2-11.

Takahashi, R., "Software Quality Classification Model Based on McCabe's Complexity
Measure", The Journal of Systems and Software. Vol. 38, No. 1, July 1997, pp. 61-69.

Truex, D.P., Baskerville, R. and Klein, R , "Growing Systems in Emergent Organizations",
Communications of the ACM. August 1998, Vol. 42, No. 8, pp. 117-123.

Wholey, D R., and Brittain, J., "Characterizing Environmental Variation”, Academy of
Management Journal. Vol. 32, No. 4,1989, pp. 867-882.

Wood, R.E., Task Complexity: Definition of the Construct", Organizational Behavior and
Human Decision Processes. 1986, Vol. 37, pp. 60-82.

Yau, S.S., and Collofello, J., "Some Stability Measures for Software Maintenance", IEEE
Transactions on Software Engineering. Vol. 6, No. 11, Nov. 1980, pp. 545+.

5-31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Yau, S.S., and Collofello, J., "Design Stability Measures for Software Maintenance", IEEE
Transactions on Software Engineering. Vol. 11, No. 9, Sep. 1985, pp. 849-856.

Yuen, C.H., "An Empirical Approach to the Study of Errors in Large Software Under
Maintenance", 2nd IEEE Conference on Software Maintenance. 1985, Washington, D.C.

5 - 3 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER 6: CONCLUSION

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CONTRIBUTIONS, IMPLICATIONS AND FUTURE WORK

Contributions and Implications
This thesis makes several contributions to our common understanding of software

evolution. This is the first study to measure and analyze differences in evolutionary

transformations of systems. Empirical studies of software evolution face particular

challenges due to the longitudinal nature of the evolution phenomenon. The results for

this study of software evolution are strengthened by use of a unique empirical data set

ten-times larger than previous longitudinal studies in this area. Prior research on software

evolution has concentrated on development and confirmation of laws of software

evolution. This research goes beyond the laws describing universal behavior of software

systems to build models for analyzing differences in system behavior, i.e. software

evolution.

This work provides a fresh approach for studying the evolutionary process of

software change. By defining and validating a multi-dimensional measure of software

volatility we can expand available methodologies. Studies of volatility from other

disciplines are compared and contrasted with software change processes. We define

software volatility as a multi-dimensional concept. Software volatility is described by

periodicity (change interval length), amplitude (change size), and deviation (change

interval predictability). Evaluation criteria are developed and rigorously applied to the

newly defined measures of periodicity, amplitude and deviation. Validity of these new

measures is tested empirically using a 20-year history of software modifications for

lifecycle maintenance in 23 information systems. The measures are found to have both

convergent and discriminant validity. Predictive validity is demonstrated with a model

for software complexity. We are able to empirically show that periodicity, amplitude and
6- 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

deviation are predictors of software complexity. Our empirical tests show that these

dimensions of software volatility are better predictors than traditional software product

metrics. Multi-dimensional measures of software volatility, i.e. amplitude, periodicity

and deviation, are relatively easy to calculate and can be aggregated to vary by system

and time period. These measures lend themselves to longitudinal studies necessary for

understanding the evolutionary processes taking place in software lifecycle maintenance.

The second research question addressed in this project is to identify antecedents

of software volatility. Recognizing the close tie between information systems and their

working environments, we examine attributes of the competitive environment, the task

environment, and the basic information system's inner environment to build a conceptual

model of antecedents for software volatility as measured by periodicity. We build a

conceptual model based on seven hypotheses. These hypotheses are empirically tested

using longitudinal data from a 20-year log of lifecycle maintenance activities for 23

information systems. We find that elements from each facet of an information system's

environment contribute significantly in determining levels of software volatility.

The third objective addressed in this research is to examine the relationship

between characteristics of software evolution and lifecycle maintenance outcomes as

measured by software processing error rates and lifecycle maintenance costs. Lifecycle

maintenance is motivated by a desire to extend the life of an existing information system.

To maintain this same progressive focus, we acknowledge that all prior development and

lifecycle maintenance work has created the currently implemented system. We ask if

attributes of an information system and its recent software evolution are determinants of

lifecycle maintenance outcomes. We build a conceptual model based on eight

6 - 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

hypotheses describing the relationships between maintenance outcomes, i.e. processing

errors and maintenance costs, and descriptors of recent software evolution and basic

information system characteristics. This theory is supported with empirical data for a

two-and-one-half-year history of lifecycle maintenance outcomes and lifecycle

maintenance activities for a portfolio of 23 information systems. By using three

dimensions of software volatility, and historical patterns of the types of lifecycle

maintenance activities recently executed, IS managers can gain significant insight into

future levels of processing errors and maintenance costs.

This research also makes practical contributions to the work faced by

practitioners. Combining the results obtained from each of the three research questions,

we provide IS managers with software volatility measures that can be calculated with a

basic spreadsheet application. By tracking the motivation of lifecycle maintenance

activities and the timing and size of software modifications implemented, IS managers

can gain insight into system behavior. These insights will help in anticipating resource

requirements for lifecycle maintenance support In addition, the use of current system

characteristics and recent software evolutionary processes to predict lifecycle

maintenance outcomes, can expand the tools available for assisting with managerial

decisions to repair or replace an information system. Contributions of this research

project are summarized in Table 1.

This research presented a number of challenges that allow it to make substantial

contributions to the understanding of software volatility and its relationship to the

evolutionary process of continuous change. First, we defined and measured software

volatility. Most prior discussions of software volatility have used counts of modifications

6 - 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

to describe the volatility of programs and systems. We define, evaluate and validate a

three-dimensional volatility measure to track software evolution during the full lifecycle

of an information system.

A study of software volatility is also particularly challenging because little theory

has been developed to guide our investigation. This work is a unique opportunity to use a

particularly large data set to gain insight into incremental changes occurring in

information systems as they age. This work began with an inductive approach. We

adapted measures and concepts from research in other areas. Research from the fields of

economics, manufacturing processes and software reliability was useful. Once software

volatility was defined, this new quantitative measure was used to identify factors

contributing to software volatility. Software volatility as a characteristic of recent

software evolution was used to model determinants of software maintenance outcomes.

Future Work

The study of software evolution and the management of evolutionary processes

fall in the intersection of software engineering and project management Analyses in

these fields must recognize information systems as the economic output of software

producing organizations. The unique characteristics of software as a product and the

unique resources required for its creation, present researchers and practitioners with a

number of interesting problems. Our recognition of the longevity of information systems

and their constant modification dictates that research in these areas maintain a

longitudinal perspective. The study of software evolution is the study of change. With

expanded understanding of change processes, we can deal with questions of how and

6 - 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

when to prepare for change, what types of systems change the most, and how these

changes can be dealt with in the most effective and efficient manner. Now that we have a

more fully descriptive measurement of software volatility, and methods for analyzing

lifecycle maintenance patterns, we can build our understanding of software evolution and

its effect on information systems. Both IS researchers and IS practitioners must

recognize that software changes and evolves as it ages. Software evolutionary processes

are neither good nor bad, but they are inevitable. With the ability to measure this

volatility, we can understand what causes change, and anticipate the consequences.

6 - 5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

RfKiirfb.9Hff!>w l i
D efiaiu a Multi-Dimensional Measure of

Research Ouestion 2:
Antecedents of Software Volatility

Pwftreli-QjintifULli
Characteristics of Software Evolution

Software Volatility and Lifecvcfe Maintenance Outcomes
Topic Multi-dimensional system-level measure of

software volatility
• Periodicity (how often?)
• Amplitude (how big?)
• Deviation (how well behaved?)

Predictive model: antecedents o f software
volatility
• Software characteristics
• Maintenance profiles (history)
• Environmental factors

Predictive model: determinants of
lifecycle maintenance outcomes
• Basic System Characteristics
• Software Evolution

• Maintenance profiles
• Software volatility

Contribution • Full picture o f lifecycle volatility -
system-level measure, multi­
dimensional, direct, objective, measures

• Measurement provides basis for theory
and testing

• Gain perspective on life cycle behavior
of software systems

• understanding evolutionary behavior
• identify and understand driving

forces o f software volatility
• help software engineers and

managers design for change

• Link between software volatility and
maintenance errors and costs

• identify behavioral patterns in
software lifecycles

• Improves manager’s ability to predict
errors and costs

Importance to
researchers

Direct objective measure, provide foundation
for new theory

Start to explain differences in lifecycle
system behavior

• Identify patterns in system evolution
and link to lifecycle maintenance
outcomes

• Predictive validation o f software
volatility measures

Importance to MBA
students

Lifecycle perspective on system management Emphasizes need to design for change Shows link between lifecycle
maintenance outcomes and software
volatility

Importance to
undergraduates

System-level perspective on software
behavior

Explain differences in software behavior Demonstrate link between lifecycle
maintenance costs and errors and system
factors

Importance to
industry
Table 1: Sum m ary o

Can only manage what can be measured

C ontributions

Lifecycle perspective for system support
resource requirements

Improve forecasting o f lifecycle
maintenance outcomes

R
ep

ro
du

ce
d

wi
th

pe

rm
is

si
on

of

the

co
py

ri
gh

t
ow

ne
r.

Fu

rt
he

r
re

pr
od

uc
ti

on

pr
oh

ib
ite

d
w

ith
ou

t
pe

rm
is

si
on

.

www.manaraa.com

APPENDIX A:

CONFIRMING EVIDENCE FOR LAWS OF SOFTWARE EVOLUTION

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CONFIRMING EVIDENCE FOR LAWS OF SOFTWARE EVOLUTION
Lehman et al. (1997) developed a set of laws describing the evolution of software

systems. Development of these laws occurred over 25 years, and was based on a series of

empirical studies. Most of these studies used data from relatively short data collection

periods (less than 3 years) and concentrated on the behavior of software for operating

systems. In some cases the laws were confirmed by analyzing the same data used to

formulate the laws (Yuen, 1987). The availability of a longitudinal set of data covering

23 distinct application systems affords us a unique opportunity to independently confirm

those laws. Empirical data from the research site (Kemerer and Slaughter, 1997; 1999)

offer an opportunity to investigate the first seven laws of software evolution.1

Laws of Software Evolution________________________ Description____________________________________
Law of Continuous Change Systems must continually adapt to the environment to

maintain satisfactory performance
Law of Increasing Entropy (later renamed Law of As systems evolve they become more complex unless
Increasing Complexity) work is specifically done to prevent this breakdown in

structure
Law of statistically smooth growth (also called the Law of The software evolution processes are self-regulating and
Self Regulation) promote globally smooth growth of an organization’s

software
Law of invariant work rate (also called Law of The organization's average effective global activity rate is
Conservation of Organizational Stability) invariant throughout system’s lifetime
Law of conservation of familiarity Incremental growth rate of a system is constant to

conserve the organization's familiarity with the software.
Law of continuing growth Functional content of systems must be continually

increased to maintain user satisfaction
Law of declining quality System quality declines unless it is actively maintained

and adapted to environmental changes
Law of system feedback Software evolutionary processes must be recognized as

multilevel, multi-loop, multi-agent feedback systems in

Table 1: Laws o f Software Evolution (Lehman et al., 1997)

1 Law 8: the Law o f System Feedback, cannot be tested with this data. Tests for system feedback require
pre- and post-test data collection, similar to that planned in the FEAST research projects (Lehman and
Ramil, 1999).

Appendix A - 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Each system can be analyzed individually using the full lifecycle histoiy.

Portfolio level analyses can be run by using the unbalanced panel data set used to

investigate research question 2.

Laws o f Software Evolution Test Variable Prediction2
Law o f Continuous Change

Law o f Increasing Entropy / Law o f
Increasing Complexity
Law o f Statistically Smooth Growth
Law o f Invariant Work Rate

Law o f Conservation o f Familiarity
Law of Continuing Growth
Law o f Declining Quality

Change events/month
MTSM
Complexity

Change events / programmer-month
Change in size / month

Change events / programmer-month
Change in portfolio size / month
Size
Errors

Change events/month

Positive
Positive
Increasing over time

Constant over time
Constant over time
Constant over time

Constant over time
Increasing over time
Increasing over time
Increasing over time

Table 2: Testing the Laws of Software Evolution

2 Predictions will be checked with pair-wise correlations.

Appendix A - 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Variables needed to verify Laws o f Software Evolution

Concent Operational variable Definition or name in *.dta file
age portfolio age Months since earliest system implementation
age Avg. system age Mean system age in portfolio
age system age Applage
age Avg. program age Mean program age in a system
age Avg. LOC age Mean LOC age in a system
Change Periodicity NMTSM
Change Amplitude NORMLOC
Change # change events Allchg
Change size LOC added LOC
Change size New programs added Creations
Change size Cyclomatics added Cyclom
Change size Operands added n2
Change size Calls added calls
Complexity System total cyclomatic Totcyclom
Complexity System total n2 Totn2
Complexity System total calls Totcalls
Complexity Normalized cyclomatic Nrmcyclom
Complexity Normalized n2 Nrmn2
Complexity Normalized calls Nrmcalls
System size Total LOC Totloc
System size No. o f programs Modulecount
Capacity unit month 1 month
Capacity unit Programmer-month Programmer-coum * 1 month
Work rate Changes per month Allchg / programmer count = wr 1
Work rate Change size per programmer-month LOC / programmer count = wr2
Work rate Change size per programmer-month Programs / programmer count = wr3
Work rate Change size per programmer-month Cyclom / programmer count = wr4
Work rate Change size per programmer-month N2 / programmer count = wrS
Work rate Change size per programmer-month Calls / programmer count = wrt>
Change rate Change size Programs created
Software faults No. Of corrections Sumcorr
Software faults Total changes Allchg

Table 3: Operational Variables

Appendix A - 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Law Concept Correlation expected Regression expected Plot needed
1 Change Corr (change,age) > 0 Change = ffage) Change vs. age

2 Complexity Corr (complexity. Age) >
0

Complexity = f(age) Complexity vs. age

2 Deviation Corr (deviation, age) > 0 Deviation vs. age
3 Change size Corr (change size, age) >

0
T-test (change size =
P eh n * toe)

Change Size vs. age

4 Work rate = work
/ capacity unit

Corr (work rate, age) > 0
T-test (workrate =
IW nk)

Work rate vs. age

5 Change rate =
Change in
Portfolio size /
capacity unit

Corr (change rate,
portfolio age)
T-test (change rate =
Mctanpiac)

Change rate vs.
portfolio age

6 System size Corr (size, age) > 0 Size = flage)
p ^ > o

Size vs. age

7 Software faults Corr (faults, age) > 0 Faults = f(age)
B ^ > o

Faults vs. age

Table 4: Operational Variables and Expected Relationships

Confirming Evidence
Law I: Law of continuous chanse

System age Average program age Average LOC age
Periodicity -0.3239 -0.1272 0.1576
Amplitude -0.1530 -0.1609 -0.2275
change events 0.1495 0.0275 -0.1376
Correlation (change, age)

N Mean Std dev. k-sz 2-tailed p
Periodicity 3201 0.4802 0.4601 16.9010 0.0000
Amplitude 3201 0.0282 0.1203 23.0357 0.0000
change events 3201 8.9510 10.2678 17.6562 0.0000
Testing for Normal Distribution

Appendix A - 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

L aw 2 : L aw o f Increasing E n tropy

System ape Average program age Average LOC age
System total cyclomatic 0.2932 0.0990 0.1194
System total n2 0.3526 0.1263 0.1151
System total calls 0.1554 -0.0412 0.0592
Normalized cyclomatic •0.0680 0.0348 0.1333
Normalized n2 -0.0916 -0.0128 0.0802
Normalized calls -0.0738 -0.1902 -0.0807
Correlation (complexity, age)

N Mean Stddev Ic-sz 2-tailed p
System total cyclomatic 3201 9138 11236 11.783 0.0000
System total n2 3201 32132 37361 11.1436 0.0000
System total calls 3201 2116 3628 15.832 0.0000
Normalized cyclomatic 3201 0.0566 0.0229 7.6711 0.0000
Normalized n2 3201 0.2187 0.0608 4.5047 0.0000
Normalized calls 3201 0.0080 0.0055 4.8847 0.0000
Testing for Normal Distribution

Law 3: Law o f Statistically Smooth Growth

System age Average program age Average LOC age
LOC 0.0052 -0.0650 -0.0903
Creations 0.0678 -0.0254 -0.1372
Cyclom 0.0002 -0.0646 -0.0903
N2 0.0166 -0.0631 -0.1075
calls -0.0037 -0.0755 -0.0774
Correlation (change size, age)

t-tests

Ho: LOC = meanioc hypothesis cannot be rejected
Ho: creations = mean^.,,^. hypothesis cannot be rejected
Ho: cyclomatics - meancyciamaQcs hypothesis cannot be rejected
Ho: n2 = mean^ hypothesis cannot be rejected
Ho: calls = meaiWb hypothesis cannot be rejected

Appendix A - 5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Law 4: Law o f Invariant Work Rate

System age Average program age Average LOC age
changes / programmer months -0.1312 -0.0586 -0.1126
LOC added/ programmer months -0.1251 -0.1158 -0.1428
Programs changes / programmer months -0.0839 -0.0215 -0.0566
Cyclomatics added / programmer months -0 1458 -0.1267 -0.1649
N2 added / programmer months -0.1418 -0.1302 -0.1783
Calls added / programmer months -0.1007 -0.1076 -0.0965
Correlations (work rate, age)

t-tests

Ho: & changes/prograramer-months mean# dungcs/programmer-months
hypothesis cannot be rejected

H«: LOC/programmer-months = meanioc/progranuner -months
hypothesis cannot be rejected

Ho: programs changed/ programmer-months = meanprogmns changed/ programmer-months
hypothesis cannot be rejected

Ho: cyclomatics/ programmer-months = meaDcsclomatics/ programmer-months
hypothesis cannot be rejected

Ho: n2/ programmer-months meant,?/ pmgmmm«T-mnnh«
hypothesis cannot be rejected

Ho* calls/ programmer-months meancaju/ pmprmmtrr-mnmh-t
hypothesis cannot be rejected

Law 5: Law o f Conservation o f Familiarity

Svstemage Average program age Average LOC age
programs created / programmer months -0.1553 -0.1220 -0.2025
LOC added/ programmer months -0.1251 -0 1158 -0.1428
Correlations (change rate / capacity, age)

Appendix A - 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

L aw 6: L aw o f C ontinuing G row th

Correlations (size, age) [same correlation test as Law 3]

N Mean Stddev k-sz 2-tailed p
LOC 3201 2956 13969 23.547 0.0000
Creations 3201 1.0997 3.3372 20.935 0.0000
Cydom 3201 139.834 674.903 23.6454 0.0000
N2 3201 492 2028 22.8564 0.0000
calls 3201 32.748 182.107 24.2515 0.0000
Testing for normal distribution

Law 7: Law o f Declining Quality

System age Average program age Average LOC age
corrections 0.0750 -0.0089 -0.1337
modifications 0.1495 0.0275 -0.1376
Correlation (faults, age)

N Mean Stddev k-sz 2-tailed p
corrections 3201 8.951 18.2678 17.6562 0.0000
modifications 3201 0.9528 2.3004 20.9571 0.0000
Testing for normal distribution

Appendix A - 7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

REFRENCES
Kemerer, C.F. and Slaughter, S.A., "Methodologies for Performing Empirical Studies:

Report from the International Workshop on Empirical Studies of Software
Maintenance", Empirical Software Engineering. Vol. 2, No. 2,1997, pp. 109-118.

Kemerer, C.F. and Slaughter, S.A., 1999, "An Empirical Approach to Studying Software
Evolution", IEEE Transactions on Software Engineering. Vol. 25, No. 4, pp. 493-
509.

Lehman, M.M. and Ramil, J.F., "The Impact of Feedback in the Global Software
Process", The Journal of Systems and Software. April 15,1999, Vol. 46, No. 2,3,
pp. 123-134.

Lehman, M.M., Ramil, J.F., Wemick, P.D., Perry, D.E. and Turski, W.M., "Metrics and
Laws of Software Evolution - The Nineties View", Metrics *97. the Fourth
International Software Metrics Symposium. 1997, Albuquerque, NM.

Yuen, C.H., "A Statistical Rationale for Evolution Dynamics Concepts", Proceedings of
the Conference on Software Maintenance, 1987, Austin, TX.

Appendix A - 8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX B:

DATA CODIFICATION AND SEQUENCE ANALYSIS METHODOLOGY

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX:
MAINTENANCE ACTIVITY CLASSIFICATION AND SEQUENCE ANALYSIS

This is a step-by-step description of the data collection and codification processes

used in this research. The following discussion concentrates on the collection and

codification of maintenance activities and sequence analysis of those activities and

associated levels of software volatility.

Maintenance Activity Classification
Step I: convert source code modification Ion to channe history records

Software change events were extracted from maintenance logs written by system

support programmers each time they updated a system in the portfolio. Logs were kept

for more than 25,000 changes to 3,800 programs in 23 different information systems

from the beginning of the early 1970’s, when many of the systems were originally

written, until the end of the data collection period, June 1993. The information systems

represent more than two-thirds of the functionality accomplished by the full complement

of the Retailer’s systems. The data available in the change logs includes the original

program creation date and author, program function, the maintenance project description,

the programmer making a change, the date of the change, and the description of the

change. In addition, the change logs reference the user project request In many cases, the

changes made to the systems are in response to emergency situations rather than user

requests.

The data codification process captures the source and type of change made.

Change event history records are dated by modification implementation date. For an

example of a change log, see Figure 1. Such documentation allows the unit of analysis for

Appendix B -1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

this research to be the individual change event} of which there were approximately

25,000 during this period.

PROGRAM-©. <REDACTED>M 110.
AUTHOR. JOHN <REDACTED>.
INSTALLATION. <REDACTED>.
DATE-WRITTEN. FEBRUARY 1990.
DATE-COMPILED.

XXXM110 ON-LINE RECEIVING ENTRY PROGRAM CHANGE LOG

DATE: 01/02/91
PROGRAMMER: JOHN <REDACTED>
CHANGE: COMPLETELY RESTRUCTURED PROGRAM.
CHANGE: RESET IDOC MRNC-DEDUCT-FLAG, WHENEVER A RECEIPT IS MADE,

TO A 'N'O VALUE.
CHANGE: REDUCE THE NUMBER OF SKU LINES ON THE SCREEN TO EIGHT

AND INSTEAD HAVE IDOC COMMENT FIELDS.
CHANGE: BE SURE NEXT PO IS NEVER SET TO AN SAV PO.
CHANGE: UPDATE BTCN SEGMENT FOR EVERY UPDATE TRANSACTION, EVEN

IF USER DOES NOT ENTER END-OF-RCPT = ’Y’.
CHANGE: ADDED FEATURE THAT LOSS-DAMAGE NUMBER AND DEBIT-MEMO

NUMBERS ON BTCN SEGMENT WILL NOT BE REPLACED WITH ZEROS
FROM A CURRENT UPDATE IF THEY HAD CONTAINED NON-ZEROS.

PROJECT REQUEST #: 403

DATE: 02/26/91
PROGRAMMER: JOHN <REDACTED>
CHANGE: FIX LOOP BUG.
CHANGE: DONT INSERT BMRR SEGMENTS FOR MANIFESTS.
PROJECT REQUEST #: EMERGENCY FIX

Figure 1: Portion of a Sample Change Log

Change logs were used to codify change events for each program or subprogram

in the portfolio based on the classification scheme for identifying software maintenance

activities. A complete breakdown of maintenance activity categories is shown in Table 1.

This is the lifecycle maintenance activity taxonomy with additional categories delineating

1 Change events include any add, change or delete o f program source code, and implementation of any new

Appendix B - 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

add, change or deletion of source code for each of the sub-types of activities. Capturing

data at this detailed level allows for more flexibility in subsequent analyses.

Corrective Enhancement/Perfective
Data Handling (CorrectDat) Data Handling: Add, Change, Delete
Logic/Structure (CorrectLog) (EnhDatAdd, EnhDatChg. EnhDatDel)
Computation (CorrectCom) Logic/Structure. Add, Change, Delete
Initialization (Comcilnit) (EnhLogAdd. EnhLogChg. EnhLogDel)
User Interface PCorrectUserl) Computation: Add, Change. Delete
Module Interlace (CorrectModl) (EnhComAdd, EnhComChg. EnhComDel)
Adaptive Initialization: Add, Change, Delete
Data Handling tAdaplData) (EnhhuAdd, EnhlniChg, EnMniDel)
Logic/Structure (AdaptLogic) User Interface: Add, Change, Delete
Computation (AdaptComp) (EnhUsrIAdd, EnhllsrlChg, EnhUsrIDel)
Initialization (Adaptinit) Module Interface. Add, Change, Delete
User Interface (AdaptUserl) (EnhModlAdd, EnhModlChg, EnhMadlDel)
Module Interface (AdaptModl) New Program (NewProgram)

Table 1: Classification Scheme (Codes in parentheses) 2

To classify each event in the change logs, a content analytic approach was

adopted using a combination of latent and manifest coding techniques. Manifest coding

involves looking through the text of the change log for visual occurrences of certain key

words. Latent coding identifies the underlying meaning in text of the change log when

key words are not sufficient to categorize events. Both approaches to coding will be

necessary to account for possible inconsistencies in how the maintenance programmers

logged their maintenance activities.

Multiple data coders were employed to content analyze the change logs. The

coders were selected based upon their in-depth knowledge of the information systems

field so they could identify terms and acronyms, and categorize events accurately.

Because of the sensitivity of data-dependent research to error, it is important that

measures be as reliable and valid as possible. Therefore, the data capturing procedures

programs in the system.

2 Adapted from Rombach, Ulery and Vallett (1986)

Appendix B - 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

employed a number of methodologies designed to maximize interrater reliability and to

assess and improve coding validity. A coding flowchart was employed to provide a

consistent way to classify change events. Each coder was instructed in a standard set of

coding procedures. For consistency, coders referred any change event that could not be

classified using the flowchart to the principal investigators for resolution. As these cases

arose, adjustments were made to the coding flowchart. See Figure 2 for the final version

of the coding flowchart.

Keyword
Ideati Ration

a r wclliMM. ho^.
IfcM •Yt»- . Cometh* ■

NoT
■Pffod*,

-N o

-Y »- Adopthc wrtmniorin

I___________ J

add? ' Yta-

No
T.

Nof

Appendix B -4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Keyword identification

adect aub-
catCKoria

!/

i r

Ye»-

No
T

No
t

Y «-H »

Y

No
f

. fcOiil' ifcn.

No
T

T
No?

/o ther'''
" jyatem’

data
haadliag

logic/
i I itructure

conputa'

Yea-
tio n

user
iatcrface

interface

coded
change
event

Figure 2: Coding flowchart

To increase intercoder consistency, several trial data coding processes were

performed. In these trials, the primary investigators randomly selected a set of

maintenance events. After each coder independently coded those selected maintenance

events, the Cohen coefficient o f agreement, Cohen’s K, for nominal scales was computed

to assess the relative pair-wise agreement between coders (Emam, 1999). Systematic

differences in coding after each trial were discussed and resolved. The coders

independently classified another set of maintenance events. When sufficient interrater

Appendix B - 5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

reliability has been achieved, the maintenance events for the different information

systems were divided among the coders. "Coder drift" or exhaustion was investigated by

analyzing a sample of each coder's work near the end of the coding process and checking

it against the principal investigator's coding of the same events. Tests for coder drift were

repeated throughout the data coding process at periodic intervals. As another validity

check, the principal investigators randomly inspected coded events to see if there were

any degradations in accuracy. Finally, change logs were compared where possible with

related data from the Retailer’s maintenance activity tracking system, to ensure that the

coded change logs are capturing the maintenance activity. All of these measures helped to

insure the reliability and validity of the change history records.

The change event history records for each system were recorded in a spreadsheet.

The researcher then had a series of 23 spreadsheets, containing one record for each date

that each program was modified. If an individual program showed multiple change

events on the same day, the maintenance activity entries represented the count of

activities occurring in that program on that day. These spreadsheets will be referred to as

the system change history file.

Step2 - start with change history records and create sum by date
The system change history file was sorted by year-month of change

implementation, and counts in each category of maintenance activity aggregated by

month. The resulting spreadsheet was referred to as the sum-by-date file. The range of

dates covered in the sum-by-date file for each system varied according to the earliest

program creation date for each system.

Appendix B - 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The sum-by-date file for each system was inspected for missing months. Any

year-months missing were inserted into the sum-by-date file for each system. Counts for

each maintenance activity category were set to zero on all inserted records.

Step3 - heuristic to identify maintenance activity for the month
Starting with the sum-by-date file for each system, each month was classified

according to the major type of lifecycle maintenance performed that month. The

classifying heuristic identified which maintenance activity type had the maximum

frequency (count) in that month and labeled the year-month record accordingly. The

label categories were new, stable, corrective, adaptive and enhancement. If two

categories had equal frequencies, the phase name was set according to this same ordered

list For each year-month classified enhancement, a subcategory was assigned by a

similar heuristic for six subcategories: logic, data, computation, initialization, user

interface or module interface (Barry, Kemerer, Slaughter, 1999). Again, if there were

equal frequency counts, the subcategory was labeled in this same order. See Figure 3 for

an example using this heuristic for part of one system's activity identification process.

Appendix B - 7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

tuw- m iv *orv*n*v «tvrv«rK iwt>h» s ir> *rb tu n *nn wsvant*. »«rvwrv
M M M I

SOB i t« M
(K i tN w n«w
stabf* t

s tob% c a rte r aeapr
0 0

w a w c i *cd
0 0

4* l*tt
0

db*
0

iope
0 0

comput* n o *
0

us tr
0

moot**
c 0

3307 M b'* MW* T 0 0 0 0 0 0 0 0 0 0 0
32PB ftab * m ot* t 0 G a 0 0 a 0 0 0 a c 0
9209 M b '* m b * t 0 0 0 a 0 a 0 0 a 0 c 0
9 T 0 n a b * stab* t 0 0 0 0 0 0 0 0 a 0 c 0
3 r t stab* •tab* ! • 0 0 0 a 0 a 0 3 0 a c c
32*2 t u b * stab* 1 0 a c 0 Q 3 0 0 0 0 c Q
3X1 M b * stab* ! 0 0 0 0 0 0 C 0 0 0 c 0
3X 2 Mb>* stab* r 0 0 0 0 0 0 a a 0 0 c 0
9X 3 M b * «tab* 1 • 0 0 0 0 0 0 0 0 0 0 c a
3X * M b * stab* t c a 0 c 0 0 0 0 g 0 c Q
330S n * M stab* 1 0 0 0 0 0 0 0 a 0 0 c 0
3 X 6 o p c tntianct 0 0 a 1 0 a 0 1 0 0 c Q
3X ? stab* ftab* t * 0 0 0 3 c 0 c 0 0 a r 0
330B n a f r t stab* 1 * 0 0 0 0 0 a 0 0 0 0 c 0
3309 n a b * stab* 1 • 0 0 0 0 0 0 0 a 0 0 c a
3310 n*w 1 0 0 0 0 c 0 0 0 0 0 0 c 0
3311 -0 9 c inN ac* 0 0 0 t 0 0 0 1 0 0 c 0
93*2 stab* stab* t 0 0 c 0 a 0 0 0 0 0 0
M Jl «#w now 1 Q 0 a 0 0 a 0 0 0 0 0 c 0
M B M b * stab* 1 0 0 0 0 0 0 a 0 0 0 c a
M B M b * slab* 1 • 0 0 0 0 0 0 0 0 0 0 c 0
M U '* * . row t 0 0 0 2 2 0 0 2 0 c 0 c 0
3505 data tnbanc* C 0 0 0 I * 0 0 t 0 0 0 c 0
9906 'Opc trOtanc* 0 0 Q G t 0 a t 0 t a a c 0
9607 c o m a correct c 0 2 0 1 0 ♦ 0 0 f 0 c 0
390B data ff M fe t 0 Q 0 G 1 • 0 0 t 0 0 0 c 0
36D9 lo f t •fttanca Q 0 0 0 2 a ? t 0 1 0 0 c 0
£ 1 0 data f f tlM tt 0 0 0 0 4 4 0 0 2 5 0 0

*
0

3 5 it data •fttaoc* 0 0 0 0 2 T 0 t 0 a 0 0
£ 1 2 o p e tnbaoc* 0 0 0 0 1 0 1 0 0 t 0 Q c c
3601 now **w 1 0 0 3 C c 0 0 0 « 0 C c 0
3EQ2 o p e a tia iK i 0 0 a a 2 1 0 0 2 0 0 Q
SEED o p e t r f a K i s Q 0 c 5 3 2 0 ♦ 3 1 0 c 0
X O i o p e •fttanc* 0 3 0 0 5 2 2 ♦ 4 Q 0 a
SEOS ^ now 1 0 0 0 5 3 2 0 t 4 0 0 c 0
3B0E o p e wftane* 0 0 1 0 2 n 0 0 t ? a a c 0
9607 *ww n*w 1 c 0 0 t e t 0 1 c Q 0 c 0
3606 st ab * stab* 1 0 0 a 0 0 0 0 0 0 0 c 0
96® now now 1 0 G 0 0 0 0 0 0 a 0 c 0
£ i 0 n b * Stab* 1 0 0 0 0 0 0 c c 0 0 c 0
36’ t now now I 0 0 0 0 a C 0 0 0 0 0 c 0
X * : lata MUflCt c 0 a 0 ♦ 0 • 0 t 0 0 0 c 0
3*01 data M I4M I 0 0 3 a 4 2 2 0 3 t a 0 c 0
970? opc cnftaoc* 0 0 a 0 6 2 f 2 2 3 0 0 r 0
3703 now now t 0 0 0 0 c 0 0 a 0 0 0 c 0
370* now now * 3 0 c 0 0 a 0 0 0 0 0 c 0
3706 data onftanct Q Q a G 2 c 1 t 2 0 0 0 c 0
37Q6 n a b * stab* 1 0 0 0 0 0 0 0 0 c 0 c Q
37tFn*w now 1 0 t 0 0 0 0 0 0 0 0 0 c 0
3706 ope i fM n ti 0 0 G 0 4 c 4 0 2 2 Q 0 c 0
3709 M b * stab* 1 0 0 0 0 0 0 0 0 0 a c 0
37*0 tope tnftanc* a 3 0 0 1 0 ♦ 0 0 1 0 0 c 0
97M -ope «f*ianca a 0 0 0 9 0 0 3 6 0 0 c 0
37*2 now n*w t 0 a a 2 • 1 0 0 1 0 0 c
9301 w * now 1 0 1 0 4 3 0 a 2 t 0 t 0
9802 now now 1 0 0 2 3 0 3 0 T t 0 0 1 0
9B0Q now now 1 0 0 0 6 2 3 t 3 t 1 a 1 0
9304 data t fM f ln 0 9 2 0 6 4 1 0 3 0 a e G
3B0S « p c •nftanes 0 C * 0 42 12 9 2 8 26 2 0 4
3BQE iope a O a ic f 0 0 3 a X 7 13 0 5 10 2 0 1 0
96® o p c onhaaea 0 0 0 0 9 2 6 t 3 3 0 0 2
9306 o p e omaae* 0 0 0 0 e a 4 4 2 5 0 t c 0
93® o p c ftwone* 0 0 2 0 0 • 7 0 2 3 2 Q 1 0
3B*0 o p e •nfiane* a 0 0 0 0 0 5 3 0 5 2 0 1 0
3BM o p e •nnaaca 0 0 a 0 13 6 3 2 4 7 1 0 1 0
9 * 2 o p e M a n e t 0 a 0 0 X 2 17 1 3 1? 0 D c 0
9901 ope tm anc* 0 0 2 0 12 5 6 t 3 r 0 0 2 0
9602 o p e M M K t 0 0 a 0 13 9 2 6 6 0 0 t Q
9903 now now t 0 T * 2 2 a t t 0 0 c 0
990* tow now 1 0 c 0 6 3 -» 1 3 3 a 0 c a
9906 lata ofbaae* 0 0 0 T 0 6 2 a 4 2 0 a 0
9906 data orttaae* 0 a n 11 4 0 4 2 0 4 3
3907 -ope tm an c t 0 c 1 0 6 4 a 1 0 2 0
SOB data M o n e t 0 0 4 4 9 15 21 3 19 8 6 0 6 0
39® data tnttoaca 0 0 3 3 22 7 i t 5 13 8 0 0 0
33*0 o p c ir tu n c f 0 0 0 3 10 3 5 2 2 7 0 0 c
9911 sarac t eonoct 0 c 7 0 5 2 3 a 1 3 a a 1 0
99*2 o p c tfSanc* 0 c 0 5 g e 0 2 3 t 0 a 0
3001 data v f iw e t 0 0 2 0 14 6 6 0 7 6 0 c 0
3002 o p c bOtaaea 0 0 t 0 19 10 9 a 9 10 0 0 c 0
9003 o p c tw a n u 0 a 0 a 4 2 0 2 1 2 0 0 t 0
300* now now 1 0 a a 13 5 5 3 4 7 0 c
90® o p c IW IK I 0 0 1 t t 8 T 3 7 0 0 c
30® data tnfiancf 0 0 0 0 17 9 6 2 6 5 0 3
9007 now now 1 0 0 0 4 2 0 2 0 0 c 0
30® o p c a sian c t 0 0 0 0 5 3 1 2 2 a 0 c
30® o p c tfOtaoca 0 0 3 a 7 6 0 3 3 0 0 1 0
3010 o p c t f « a e t 0 0 6 0 2 r 7 4 9 9 3 3 2 a
X U data antianet 0 0 2 0 12 8 Q 5 4 2 0 l 0
30*2 data M aw ei 0 0 0 0 7 5 1 3 2 a a o
9101 data •m ane* 0 0 0 0 14 7 a 10 1 0 0
3102 o p c tnrianc* 0 0 0 a 10 2 5 3 3 5 a a G 2
91® j**r a tta ic t 0 0 t 0 2 2 a 0 0 a 0 0
310* o p c tnftsat* 0 0 a a 2 t 0 0 1 0 C Q
31® o p c eroianca o 0 0 0 7 2 2 3 3 3 0 a t 0
91® data i f f m e t 0 0 a a 11 6 1 € 4 0 Q 1 0
3107 o p c •nfcanca a 0 1 0 7 2 3 2 2 4 0 0 1 0
91® o p e atotane* 0 0 0 0 9 0 8 r 3 4 0 0 1

Figure 3 : labeling year-month by maintenance activity

Appendix B - 8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Step4 - chronological vector o f maintenance profile
After each record in the system sum-by-date file had been identified by

maintenance activity type, a chronological vector of maintenance activities was extracted.

Each element in the vector represented a month's dominant activity. Separate

chronological vectors of activities were created for each system. The vector

corresponding to the example shown in Figure 3 is displayed in Figure 4.

Appendix B - 9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

pftM*niM
staMe
stableRlWt
•tab*
ItlM

ttaMa
stab*
ftaMt
stable
log*
ttabH
•tabit
Stable
no*
109c
stab*

stew*

log*
canoe
M l

M l
cola
log*
no*
log*
log*
log*
p*»
leg e

Ml
M l■09c

Ml
RIM

log**®9c

M l
log*
log*
log*
log*

log*
log*
log***=«m
row
Ml
M l
log*
com

M l
log*
CMTOCT•r
M l
I09C
log*ROW
left

tag*nr
Ml
Mia
Ml

**=

>•*=
Figure 4: chronological vector of maintenance activities

Appendix B -10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

StepS - phase map for maintenance activities
For each system, the chronological activity vector was input into Winphaser

software to begin a longitudinal sequence analysis of information system behavior. The

resulting categories of dominant monthly activities were used to create a chronological

vector of phases for each system. These vectors were then individually analyzed by

Winphasers software to produce both phase and gamma maps (Pelz, 1985; Kemerer and

Slaughter, 1997; 1999). Phase mapping techniques analyze nominal data to identify

sequences of similar categories. These sequences identify similarities in sequences of

nominal data to show patterns of behavior. Winphaser maps the input vector of nominal

data elements to a phase map to help analyze and identify patterns in the nominal input

vector. Winphaser allows the user to vary phase length from one sequence analysis to

another. By changing the phase length, researchers can simplify resulting sequential

patterns and improve the confidence level of resulting phase maps. Winphaser identifies

sequences of like activities with phases of specified phase length. If activities are so

varied that none of the types are predominant, Winphaser creates a Pending phase.

Smaller phase lengths create fewer pending phases in the phase mapping.

The input vector shown in Figure 4 was sequentially analyzed by Winphaser to

produce the phase map shown in Figure 5.

3 Winphaser software is used for sequence analysis o f nominal data. Winphaser was written by Michael
Holmes at University o f Utah, as adapted from Holmes and Poole, 1991.

Appendix B -11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 5: phase map from Figure 4 sample input vector (optional phase length = 3)

Step6 - eamma map for precedence ordering o f maintenance profiles
Winphaser also provided a gamma analysis and precedence mapping to identify

the predominant phase order. Phase length was set to insure an average confidence level

of 50% for the gamma analysis for the input vector of maintenance activities in each

system's history. The same phase length was used for both the activity phase map and

gamma analysis. The heuristic used for setting phase length was to find the smallest

phase length that allowed at least a 50% average confidence in the precedence ordering,

thus creating the fewest pending phases with the required level of confidence in the

identified phase ordering. Phase lengths varied from system to system. Figure 6 shows

the gamma analysis and precedence map established by the input vector in Figure 4.

Appendix B -1 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

WinPhaser Gamma Analysis

SAMPLE-1 09-24-1999 14:14:50 L3 N100 Dl-8 99 (Full Length)
Phase Frequency

data 3
logic 26
new 4
Pending 44
stable 22

Precedence Counts

data logic new Pending stable

data 0 57 12 132 66
logic 21 0 84 787 572
new 0 20 0 108 88
Pending 0 357 68 0 968
stable 0 0 0 0 0
Pairwise Gamma Scores

data logic new Pending stable
data .000 .462 1.000 1.000 1.000
logic -.462 .000 .615 .376 1.000
new -1.000 -.615 .000 .227 1.000
Pending -1.000 -.376 - .227 .000 1.000
stable -1.000 -1.000 -1.000 -1.000 .000
Separation Scores

data logic new Pending stable
0.865 0.613 0.711 0.651 1.000

Precedence Scores

data logic new Pending stable
-0.865 -0.382 0.097 0.151 1.000

Phase Diagram

stable*** Pending** new** logic** data***

* .25 < separation < .50
** .50 < separation < .75
*** .75 < separation

Figure 6: gamma analysis and precedence map

Appendix B -13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Software Volatility Analysis:
Stepl - sort change history records

The change history file for each information system was sorted: primary sort

system name, secondary sort change date.

Step2 - calculate time since previous software modification
The sorted change history records were expanded to include a calculated field for

time since previous software modification. The elapsed time since the prior change

record for that program is calculated.

Step3 - re-sort change history records
The resulting expanded change history file was sorted by year-month.

Step4 -calculate MTSM and change dispersion
Change history records were aggregated by the time unit of analysis.4 In most

cases the unit of analysis is monthly and the records were aggregated by year-month of

change implementation. The Mean of Time since Software Modification, MTSM, was

calculated for each year-month, and the variance for each MTSM was recorded as the

change dispersion for the same year-month.

StepS - set periodicity, amplitude and deviation hieh low indicators
For each information system, the lifetime mean periodicity, amplitude and

deviation were calculated. High/low indicators5 for each dimension are set for each

month.

4 This discussion relies on measures aggregated by month. Software volatility measures to investigate
research question 3 on maintenance costs calculate software volatility on a quarterly basis.

5 Periodicity indicators are set for long/short to indicate time intervals longer or shorter than average.

Appendix B - 14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Step6 - identify volatility classification for each month as follows:

Two coding schemes for nominal classification of software volatility are used.

The first scheme classifies volatility by examining characteristics of the periodicity

(timing) and deviation (predictability) of software modifications. The second scheme

uses all three dimensions of software volatility. Scheme 2 classified systems behavior by

amplitude/periodicity/deviation.

Classification Periodicity level Deviation level
A Short Low
B Short High
C Long Low
D Long High
Volatility Classification Scheme 1: Periodicity/Deviation

Classifica­
tion

Amplitude Periodicity Deviation Description

I Low Long Low Least volatile: occasional small
modifications occurring in a well-
behaved pattern

n Low Long High Occasional small modifications with
wide variance o f behavior among system
programs

III Low Short Low Constant small modifications occurring
in a well-behaved pattern

IV Low Short High Constant small modifications with wide
variance o f behavior among system
programs

V High Long Low Occasional large modifications
occurring in a well-behaved pattern

VI High Long High Occasional large modifications with
wide variance o f behavior among system
programs

vn High Short Low Constant large modifications occurring
in a well-behaved pattern

vm High Short High Most volatile: constant large
modifications with wide variance o f
behavior among system programs

Volatility Classification Scheme 2: amplitude/.periodicity/deviation

Table 2: High/low indicators and volatility classifications

Appendix B - IS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

S tep7 - chronological vector of vo la tility classifications
As with the chronological vector of activity phases, a similar vector of volatility

classifications is created for each information system. After the appropriate classification

scheme is selected, a chronological vector is created for the life span of the information

system. This vector is used as an input file for Winphaser mapping and gamma analysis.

Step8 - phase map of volatility classifications
Winphaser sequence analysis was run for the chronological vector of volatility

classifications associated with each system.

Step9 - gamma mao for precedence orderinz o f volatility classifications
This same sample data was used as input for gamma analysis and precedence

ordering produced by Winphaser. The 4-IeveI classification of volatility was used as a

basis for the sample gamma analysis in Figure 7.

Appendix B -16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

F S R Q ' J A - l 0 9 - 2 4 - 1 9 9 9 t 4 : 5 € : 5 3 L 2 N I O C D 1 - ?

F r. a s « * r • q u <f r. j y

! F » 1 1 L e r . ' j i r . !

P d i r v i s e 3 a rs m «* j : ; : e s

s e p a r i ' : ; r.
s e p a r a t i o n
s » p a : a r 1 : n

Figure 7: Sample Gamma analysis and precedence ordering

The example gamma analysis in Figure 7 identified 77 software volatility A

phases, 17 software volatility B phases and 152 software volatility C phases. The

precedence ordering reports that most of the time the system's volatility travels from type

C to type A to type B.

Step 10 - radial graphs o f stability Quadrants
To show ordering and relative magnitude of volatility classifications the

precedence ordering and volatility phase frequency reported from the gamma analysis

were normalized and displayed in the form of a radial graph. First, the classifications

were ordered by severity and degree of volatility from a software manager's planning

Appendix B - 17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

perspective. The ordering listed in Table 3 was based on Classification scheme 1 using

periodicity/deviation.

Volatility classification Order
C 5
D 4
Pending 3
A 2
B 1
Table 3: Volatility Classification Ordering

The length of each phase was normalized as the proportion of that type relative to

all types identified by the gamma analysis. For the sample in Figure 7, the normalization

is as follows:

A: 77(77-17-152) = 0.30

B: 17 (77-17-152) = 0.07

C: 152 (77-17-152) = 0.63

The resulting radial graph is displayed in Figure 8.

Radial graphs were created for each information system to allow visual

comparison of the changes in volatility over system life spans. A set of graphs was

created for each classification scheme. They are displayed in the next two appendices.

Appendix B -18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Sempie

4.5 -

3.5 -

2-5 -

1.5

9

Figure 8: Radial graph of volatility gamma analysis

REFERENCES
Barry, E.J., Kemerer, C.F., and Slaughter, S.A., "An Empirical Analysis of Software

Evolution Profiles and Outcomes", Proceedings of the International Conference
on Information Systems. Charlotte, NC, December 1999.

Emam, Khaled El, "Benchmarking Kappa: Interrater Agreement in Software Process
Assessments", Empirical Software Engineering. 1999, No. 4, pp. 113-133.

Holmes, ME., and Poole, M.S., "Longitudinal analysis", in S. Duck and B. Montgomery
(Eds), Studying interpersonal interaction. New York, Guilford, 1991, pp.286-302.

Kemerer, C.F., and Slaughter, S. A., "Determinants of Software Maintenance Profiles: An
Empirical Investigation", Journal of Software Maintenance. 1997, Vol. 9, pp. 235-
251.

Kemerer, C.F., and Slaughter, S.A., "An Empirical Approach to Studying Software
Evolution", IEEE Transactions on Software Engineering. July-Aug. 1999, Vol.
25, No. 4, pp.493-509.

Pelz, Donald C., "Innovation Complexity and the Sequence of Innovating Stages",
Knowledge. Creation. Diffusion. Utilization. March 1985, Vol. 6, No. 3, pp. 261-
291.

Appendix B - 19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX C:

RADIAL GRAPH REPRESENTATIONS OF GAMMA ANALYSES

Using Periodicity Deviation Classification o f Software Volatility

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ADV

1
5 -

4.5 -
4 -

3.5 -
3 *

2.5

1.5

0.5.

' 5

Appendix C -1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APX

4.5

3.5

2.5

0.5.

Appendix C - 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ARA

1
5 -
5 -
4 -

3.5 -
3 -

2.5 -

,0.5.

Appendix C -3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ARI

Appendix C - 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ARS

4.5

3.5

2.5

,0.5.

9

8 ' - r ’ 5

Appendix C - 5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

BTK

4.5

3.5

2.5

,0.5.

Appendix C - 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CPM

1

4.5

3.5

2.5

0.5.

9

Appendix C - 7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CSA

4.5

3.5

2.5

,0.5.

7' '6

Appendix C - 8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

FAM

1
5 -

4.5

3.5

2.5

9

Appendix C - 9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

FSR

4.5

3.5

2.5

1.5

0.5.

Appendix C -10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

GLM

4.5

3.5

2.5

Appendix C - 11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

MAN

4.5

3.5

2.5

,0.5.

8 ' - 5

7' '6

Appendix C -12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

MPC

1
5 -

4 -
3.5 *

2.5

0.5.

Appendix C - 13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

MPF

4.5

3.5

2.5

,0.5.

Appendix C- 14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

MRM

4.5

3.5

2.5

,0.5.

Appendix C -15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

OMS

1
5 -

4 -

3 -
2.5 -

0.5.

9

Appendix C -16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

PCS

1
5 -

4.5 -
4 *

3.5 -
3 -

2.5 *

0.5.

9

Appendix C -17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

PMS

4.5

3.5

2.5

0.5.

8 . 5

7' '6

Appendix C -18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

PPS

1
5 -

4.5 *
4 f

3.5 *
3 -

2.5 -

0.5,

9

Appendix C -19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

PRP

4.5

3.5

2.5

,0.5.

Appendix C - 20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

PRT

1
5 -

4.5

3.5

2.5

9

Appendix C - 21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

PYR

4.5

3.5

2.5

0.5.

9

Appendix C - 22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

UIS

4.5

3.5

2.5

1.5

0.5,

7' '6

Appendix C - 23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

APPENDIX D:

RADIAL GRAPH REPRESENTATIONS OF GAMMA ANALYSES

Using Periodicity Amplitude Deviation Classification o f Software Volatility

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CO

o

ro

N)

cn

u

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Group
1

Lifetim
e

V
olatility

www.manaraa.com

Appendix
D

(O

® \

■V

IU

\ 1Ol

<*>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Group
2

Lifetim
e

V
olatility

www.manaraa.comR e p ro d u c e d with perm iss ion of th e copyright ow ner. F u r th e r reproduction prohibited without perm iss ion .

www.manaraa.com

Appendix
D

-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Group
4

Lifetim
e

V
olatility

www.manaraa.com

Appendix
D

-

co

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

G
roup

5
Lifetim

e
V

olatility

